
A NEW SEGMENTATION TECHNIQUE FOR MULTI FONT FARSI/ARABIC TEXTS

M. Omidyeganeh•, K. Nayebi• , R. Azmi•• and A. Javadtalab•••

•

 Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran. momid@mehr.sharif.edu ,

knayebi@sharif.edu.
••

Department of Computer Engineering, Azzahra University,Tehran,Iran, razmi@alzahra.ac.ir.
•••

 Department of computer engineering Sharif University of Technology, Tehran, Iran. javadtalab@ce.sharif.edu

ABSTRACT

Segmentation is a very important stage of Farsi/Arabic

character recognition systems. A new segmentation

algorithm -for multi font Farsi/Arabic texts- based on the

conditional labeling of the up contour and down contour

is presented. A pre-processing technique is used to adjust

the local base line for each subword. This algorithm uses

adaptive base line for each subword to improve the

segmentation results. This segmentation algorithm, in

addition to up and down contours, takes advantage of

their curvatures also. The algorithm was tested on a data

set of printed Farsi texts, containing 22236 characters, in

18 different fonts. 97% of characters were correctly

segmented.

1. INTRODUCTION

Optical character recognition is an attractive branch of

image processing with many applications in man-

machine interface and document processing. Intensive

research in this area has also resulted in commercial

systems [13]. However, Farsi/Arabic texts have some

properties that make them difficult to recognize.

Farsi/Arabic texts are cursive and are written from right

to left .A Farsi/Arabic character might have several

shapes -from 1 to 4 shapes- depending on its relative

position in the word. In addition, some Farsi/Arabic

characters have the same shape and differ from each

other only in some dots or zigzag bars. Each word,

machine-printed or handwritten, may consist of several

separated subwords. A subword is either a single

character or a set of connected characters. Although,

seven Farsi characters out of 32 do not join to their left

neighbors, others join to the neighboring characters to

make a word or a subword. The neighboring characters,

separated or connected, may overlap vertically. Some of

these characteristics of Farsi/Arabic script are shown in

Figure 1.

There are several papers published on the recognition of

Arabic and Farsi texts e.g. [1,2,3,4,5,7,10,13,14]. The

main problem is Farsi/Arabic text is its segmentation.

There are two main approaches to word recognition:

segmentation-based and segmentation-free [8,9,11].

Because of the mentioned characteristics of Farsi/Arabic

text, a hybrid approach for Farsi text recognition seems

more promising [2]. This paper concerns the first

approach, where each word or subword is first split into a

set of single characters. The word is then recognized by

the sequence of its characters.

Figure 1.Some characteristics of Farsi/Arabic script

Different character segmentation techniques for the

printed Farsi/Arabic words have been proposed [14, 8, 10

and 3]. At 2001, R. Azmi proposed a new technique for

omnifont Farsi text segmentation [5]. His segmentation

algorithm was based on the conditional labeling of the up

contour. In this paper, we present a new algorithm for

segmentation of multi font Farsi/Arabic texts, which uses

the idea of applying conditional labeling rules similar to

R. Azmi, on both the up contour and the down contour of

the subword. This segmentation algorithm also uses up

contour curvature and adaptive base line for each

subword. This technique is not sensitive to overlapping

characters and slant. The paper is organized in five

sections; Section 2 describes the pre-processing stage,

including the base line detection and its local adjustment.

In Section 3, the proposed segmentation algorithm is

explained. The experimental results are presented in

Section 4. Finally, the conclusion is given in Section 5.

2. PRE-PROCESSING

We prepare a document for 6 fonts. The documents are

scanned with a resolution of 300 dpi and are stored as

binary images. In this resolution, the pen size for a

normal printed text with sizes between 14 to 16 is about 4

to 6 pixels depending on fonts. The text lines and their

words/subwords are segmented by finding the valleys of

the horizontal and vertical projection profiles. To

II - 7570-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

calculate the pen size, a text line is scanned column by

column. The most frequent pen thickness in these

columns is adopted as the pen size, w. At the next step,

the global base line is defined as a horizontal line, all

across a text line whose width is equal to w, and covers

the maximum number of black pixels in that text line.

Each subword is combination of some regions. One or

more of these regions are bodies; others are points, zigzag

bars, etc.

Next, we define main body/bodies of each subword. If a

region overlaps with the base line in some pixels, it is

considered to be the body (Fig. 2). To find the pen size

more precisely, we calculate pen size just for bodies of

each subword again. The line of bodies is scanned

column by column. In this case, the most frequent

thickness of the black-pixels in these columns is adopted

as the new pen size, w. Contour of each subword is

extracted using a convolution kernel with Lapacian edge

detection method. By moving from right top black pixel

to left down black pixel clockwise through the contour,

up contour is extracted. Down contour is extracted by

moving from left down black pixel to right up black one

clockwise through contour. For locating the base line

accurately, a technique is used that locally adjusts the

base line. If line is completely written (for A4 page); the

line is segmented in to five sections, otherwise we will

use suitable sections of line. The up and down contours of

subwords of the determined length of line, traced in

CCW, are represented by the 8-directional Freeman code.

Within a distance of w/2 around the upper edge of the

global base line, the row of the up contour image having

the maximum instances of the code 4, say n4, is

considered as the upper bound of the local base line, iup.

The lower bound, idown, is found in a similar way,

searching for a row with maximum instances of the code

0 in the image of down contour image, say n0. If the

width of the resulting local base line is greater than

1.25w, then if n4 > n0, the iup is retained and the idown
is shifted upward, so that the width of the base line

becomes w. Otherwise, if n4 <=n0, the iup is shifted

downward in the same way.

3. SEGMENTATION ALGORITHM

3.1. Contour labeling

This step of the segmentation technique is based on the

conditional labeling of the up contour and down contour

of each subword (Fig. 3). Tracing the up contour from

right to left in CCW direction, each point is labeled

depending on its distance from the base line and the label

of its preceding point. These labels are 1, 0 and -1

standing for up, middle and down, respectively. The

labeling process is shown in Fig. 5(a) in the form of a

state diagram. The label of the first point of a contour is

always up. Figure 4(a) shows a sample word and it’s

labeled up contour. The neighboring points having the

same label make a path. If a path is shorter than (w/2+1),
it is linked to the preceding path. Since in some cases the

curves and bends are only in up contour or down contour

of subwords, in our algorithm, we also label down

contours. Labeling procedure for down contours is the

same as that of the up contours. The state diagram of this

procedure is shown in fig. 5(b). In this way, as shown in

figure 4(b), the up contour and down contour are

represented by strings of the labeled paths –both from

right to left.

Figure 3.(a) Body of word (b) its contour (c) up contour (d) down

contour

Figure 2.Pre-processing

II - 758

➡ ➡

Figure 4. (a)A word, its contour, and its labeled up contour . (b) A

word, its contour and labeled down contour

Figure 5.State diagram of (a)up contour (b) down contour labeling

process

3.2. Contour curvature grouping

Using contour curvature of subwords will improve the

segmentation results. Specifically soft bends in subwords

are hard to determine with labels introduced in 3.1. So we

add another step to our algorithm. This step works like in

3.1. Up contour and down contour of the subword, traced

CCW, are represented by the eight-directional Freeman

code. Numbers from 0 to 7 are the names of these kinds

of grouping. The neighboring points having the same

number make a group. If the length of a group is shorter

than w/2, it is linked to the preceding path. So the codes

are smoothed somehow.

3.3. Character segmentation

A potential segmentation point is defined as follows:

1. All segmentation points must be 1.5w apart from left

and 2w apart from right end of the subword.

2. All segmentation points must be around base

line.(within w/2 of it)

3.3.1. For contour groups 0-7 (freeman code)
Here we use the difference between two adjacent groups

and the paths (up, median, down) to determine the

segmentation point. If the previous path is a 1 (up) path

longer than w; and the point in up contour is in a group

with number 2, 3 or 4; and the point in down contour

with the same column, is in a group with number 6 or 7,

the point is segmentation point.

3.3.2.For contour labeled by up, median and down labels
For both the up contour and the down contour, If the 0

path (median) is longer than w and:

The previous path and the next path is 1 path and the

next path is longer than 1.5w; or the next path is -1 and

its length is more than 2.5w; or the next path is -1 path,

longer than 4w and the last path.

3.3. Adaptive local base line

Thereafter, we divide the length of subword by the

number of segmentation points, and compare the result r
with a threshold t. If r is less than t the local line will

vary and the procedure will repeat. Local line will go up

and down for definite times depending on w. This step is

useful, especially when our base line is not accurate. Here

we will take care of wrong segmentation points so that

they do not affect our results. The threshold is determined

statistically. It is worth mentioning that this segmentation

algorithm is not sensitive to slant and overlapping

characters. The segmentation algorithms that are based

on the vertical histogram or upper profile of the words

have severe problems with overlapping characters. This

algorithm uses the contours and therefore tolerates any

degree of overlapping between the characters. An

example to show the strength of this technique, compared

with the other techniques, is shown in Fig. 6.

Figure 6.The effect of slant and overlapping characters in: (a)

histogram-based methods; (b) profile-based methods d (c) contour-

based method.[5]

3.4. Post-processing

The segmentation algorithm tends to over-segment the

characters, i.e. certain characters are split into sub-

characters. There are three main reasons for this. First,

the algorithm is tuned as not to miss any segmentation

point, if possible. Second, there are certain simple shapes

in the body of some characters that resemble other

characters. Third, our algorithm is for multi font cases

and in fact, it is very difficult to find a procedure suitable

for all fonts. It is possible to leave these errors to be

resolved in the recognition stage. However, the errors that

occur frequently can be detected and corrected, as

described here. Sometimes more than one segmentation

point is determined instead of one. In this case points

nearer than w/2 is gathered to a one point. Some

II - 759

➡ ➡

characters, when occurring at the end of a subword, may

have a u path that causes a false segment. Some other

characters have a similar u path that produces a correct

segment. The second group of character is detectable by

their height or loop. Therefore, the false segment is

recognized and connected to its right neighbor (fig.7).

Using dots and their information such as position,

number, etc will be useful, too. [1]

Figure 7.Segmentation examples

4. EXPERIMENTAL RESULTS

The segmentation algorithm was tested on a set of printed

texts in 18 different fonts (Fig. 8). The test set includes

22236 characters. The training samples are not included

in the test set. Results are shown below. (Table 1)

Figure 8. .Sample words of different fonts used in test set

Table 1-segmentation results

Font
Correct Segmentation

Rate(%)

traffic 99.92%

Yekan 99.76%

Homa 99.68%

Roya 99.52%

Simplified Arabic 99.44%

Arabic Transparent 99.28%

Yagut 99.20%

Elham 99.03%

Times New Roman 98.80%

Mitra 97.91%

Nazanin 97.11%

Kamran 96.79%

Esfehan 96.15%

Davat 94.79%

Koodak 94.40%

Arshia 92.30%

Zar 90.62%

Lotus 90.46%

Total 96.95%

5. CONCLUSION

In this paper, a character segmentation algorithm was

proposed for multi font Farsi/Arabic text. A correct

segmentation rate of about 97% for 18 fonts was

achieved. The algorithm is tolerant to slant (below .1719

degree), and to some extent to the misalignment of the

local base lines. The segmentation errors were mainly due

to skewed text lines. Using a pre-processing step will

improve the results.

6. REFERENCES
[1]M. Altuwaijri, and M. Bayoumi, (1994), Arabic text

recognition using Neural Networks, Proc. Int. Symp. on

Circuits and Systems – ISCAS, 1994, pp. 415 – 418.

[2]H. Al-Muallim and S. Yamaguchi, “A method of recognition

of Arabic Cursive Handwriting”, IEEE Trans. Pattern Anal.

Mach. Intell. PAMI – 9, 1987,pp 715-722

[3]A. Amin, “Off-line Arabic character recognition: the state of

the art”. Pattern Recognition 31, pp. 517-530. 1998.

[4]A. Amin and G. Masini, “Machine Recognition of Multifont

printed Arabic Texts”, Proc. 8th Int. Conf. on Pattern

Recognition, Paris, 1986, pp 392-295.

[5]R. Azmi and E. Kabir, "A New Segmentation Technique for

Omnifont Farsi Text", Pattern Recognition Letters 22, pp. 97-

104, 2001.

[6]R. Azmi, “Recognition of omnifont printed Farsi text”. Ph.D.

Thesis, Tarbiat Modarres University, Tehran,1999.

[7]R. Azmi and E. Kabir, ”A recognition algorithm for hand

printed Farsi characters”. Proceedings of the International

Conference on Telecommunication, ICT '96, Istanbul, pp. 852-

855, 1996.

[8]T.S. El-Sheikh and R.M. Guindi, “Computer recognition of

Arabic cursive scripts.” Pattern Recognition 21, pp. 293-302,

1988.

[9]J.J Hull and S.N. Srihari, “A computational approach to

visual word recognition: hypothesis generation and testing”,

Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, CVPR'86, Washington, DC, pp. 156-161,

1986.

[10]B.M. Kurdy and A. Joukhadar, ”Multi font recognition

system for Arabic characters”. Proceedings of the Third

International Conference and Exhibition on Multi-Lingual
Computing, Durham, pp. 731-739, 1992.

[11]Y. Lu and M. Shridhar, “Character segmentation in

handwritten words - an overview”. Pattern Recognition 29,pp.

77-96, 1996.

[12]K. Massruri and E. Kabir, “Recognition of hand-printed

Farsi characters by a Fuzzy classifier”. Proceedings of the

Second Asian Conference Computer Vision, ACCV '95,

Singapore, Vol. 2, pp. 607-610, 1995.

[13] S. Mori, C.Y. Suen and K. Yamamoto, “Historical review

of OCR research and development”. Proc. IEEE 80, pp. 1029-

1058,1992.

[14]B. Parhami and M. Taraghi, “Automatic recognition of

printed Farsi text”, Pattern Recognition 14, pp. 395-403,1981.

II - 760

➡ ➠

