
Segmentation of Color Textile Images Based on a Multiscale Context Model 

Xiqun Lu  Binwei Yang 

College of Computer Science, Zhejiang University, Hangzhou, 310027, P.R. China 

Email: xqlu@cs.zju.edu.cn 

Abstract 

In this paper, a multiscale color image segmentation algorithm 

based on a contextual model for textile images corrupted by 

textile texture noise is proposed. The context model not only 

captures the statistical dependency between adjacent scales, but 

also the statistical dependencies among the neighboring blocks. 

The multiscale approach is used to solve the conflict between 

boundaries localization and high resolution segmentation, and 

the segmentation result is recursively refined at each scale 

based on the contextual model. Experimental results show that 

our algorithm can achieve better segmentation results when 

tested on color textile images, and also produce high quality 

edge images when compared with the mean-shift algorithm[1]

and the multiscale block segmentation approach proposed in [2].

1 Introduction 

Color segmentation is an extremely important operation in 

several applications of image processing and computer vision, 

especially in the textile and printing manufacture industry, since 

it represents the very first step of textile pattern design and print. 

The essential goal of color segmentation in the textile and 

printing manufacture industry is to extract the dominant colors 

from a textile image which was obtained by scanning a cloth 

sampling into the computer. At the same time it demands the 

segmented image will produce a smooth and connective edge 

image which will be useful for pattern editing and designing 

later. 

In a textile color image, the fabric texture has a great impact 

on the colors’ appearance, which is known as the “texture 

noise”. A color textile image is shown in Fig. 1. According to 

the human observation there are only 6 dominant colors in the 

original textile image (left), but if the small window in the left 

image is enlarged, we will find there are many different colors 

in the perceived red region. This phenomenon was caused by 

the “texture noise”. 

Fig. 1 Example of texture noise

The flatness of the color histogram of a textile image makes 

bottom-up, solely image driven segmentation techniques always 

prone to errors. A relatively simple but quite effective technique 

to obtain the dominant colors from a color image is the color 

segmentation algorithm proposed by Comaniciu and Meer [1]. 

It is based on the “mean shift” algorithm for estimating the 

density gradients, and essentially works with the image 

histogram, and it also attempts to incorporate spatial constraints 

by imposing constraints on the connectivity of the detected 

regions. However it is difficult for the clustering-based 

algorithms to capture the global dominant colors from a textile 

image because of the texture noise. The experimental results in 

Section 4 show that the mean-shift algorithm is not good at 

extracting the true dominant colors from the textile image, and 

the detected edge image is of poor quality. 

Another very important image segmentation technique which 

can integrate both image features and prior contextual 

properties  multiscale Bayesian approaches have become 

popular in recent years. In [3], Markovian dependencies are 

assumed across scales to capture interscale dependencies of 

multiscale class labels with a causal MRF structure, and a 

non-iterative segmentation algorithm (SMAP) was developed 

with low computation cost. In [4], an improved wavelet-domain 

HMMs, HMT-3S was developed to capture wavelet coefficient 

dependencies both across subbands and across scales. The joint 

multicontext and multiscale segmentation technique for texture 

images can achieve more accurate texture statistical 

characterization. All these algorithms were designed for gray 

II - 7530-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



images. In [5], a multiscale perceptual segmentation approach 

for color image textures was proposed. A multiscale tower is 

generated by a multiband smoothing based on human 

psychophysical measurements of color appearance. And the 

probabilistic reassignment of the pixels to the clusters is 

propagated through levels of the multiscale tower. 

Although our segmentation method is based on a contextual 

model and multiscale approaches, it has several important 

distinctions from the previous approaches. First, we will not 

create a tower of multiscale images based a smoothing 

algorithm as described in [5]. Our multiscale approach was 

motivated by a similar context-dependent classification 

structure developed by Li et al. [6] which was designed for gray 

low DOF image segmentation. We modified this kind of model 

for color images, and the probabilities is assigned to the blocks 

not to the pixels, and balance statistical dependencies between 

adjacent scales, and among the neighboring blocks into the 

MAP estimation, but in [2] we had not introduced any statistical 

dependencies among scales and adjacent blocks. The concept of 

scale in this paper is related to the size of blocks during the 

segmentation. 

The rest of paper is organized as follows: In Section 2 we 

describe the multiscale contextual model used in our 

segmentation algorithm. The details of the segmentation 

algorithm are provided in Section 3. Section 4 reports 

experimental results of our algorithm on color textile images, 

compared with the state of the art algorithms, and Section 5 

ends the paper by presenting some concluding remarks. 

2 The Multiscale Contextual Model 

Xia et al. proposed five context models in [4], and they proved 

that the context-4 model can provide high percentage of 

boundaries that coincide with the true ones. In this paper, we 

adopted the context-4 model shown in Figure 2. But there are 

fundamental distinctions between our model and the context 

model proposed in [4]: their multiscale decomposition was 

based on the Gaussian pyramid, and the interscale and the 

intrascale statistical dependencies of multiscale class labels 

were quite different from that derived here. The most important 

difference between the context model proposed in [4] and our 

context model is that their model only used for gray images.  

We start with a large block size. And the color of each block 

is initially determined by the color distribution of the block and 

the color features of the pre-computed dominant colors (which 

will be described in the next section).  

Fig.2  The Multiscale context model 

At every increased scale, each block is subdivided into four 

child blocks, forming a quadtree structure. If a block is decided 

as smooth, and this block inherits the color of its parent block; 

otherwise if the block is nonuniform, and the color of this block 

will be computed as the following equation: 
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where M is the total number of the extracted dominant colors 

from the input image, )|( kijdp c  is the conditional 

probability of the current block dij will be classified as the kth

dominant color, given the color features of the dominant colors: 
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Here
mnp is represented as the RGB vector of a pixel located in 

the current block dij, and # is the operator to count how many 

pixels in the current block belong to the kth dominant color 

(S S is the total number of pixels in the current block dij).

),,1( Mkkc represent the pre-computed color feature 

vectors of the dominant colors. And Tk takes a half of the 

minimum distance between the dominant color 
kc and the 

other dominant colors: 

2
min

jk

j
kT

cc  (3) 

Thus all the pixels belong to the dominant color 
kc will fall 

into a sphere with radius of Tk which centered at
kc .

kv in

equation (1) contains the contextual information including the 

color information of the parent block and its 8 adjacent blocks. 

We make the assumption of the independence of the color 
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conditional probability of the parent block from those of the 

neighbor blocks. Hence 
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kkP vc can be computed as the 

following: 
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and the prior probability of the dominant colors )( kp cc can 

be computed at the beginning according to equation (2), but 

here dij is the whole image. 

In the process of segmentation, first we choose a uniform 

texture region as a texture sample from the input image, and 

then apply the wavelet transform on its luminance component, 

and obtain three variances of wavelet coefficients in the three 

high frequency bands LH

t
, HL

t
and HH

t
, which is used as a 

uniform texture feature vector. We will use this texture feature 

to decide whether a block is uniform or not during the 

segmentation. In our current implementation, the Haar wavelet 

transform is used because of its good localization property 

provided by its shorter filter and its low computation cost. 

3 The Segmentation Algorithm 

Our algorithm focuses on the textile color images segmentation 

based on the contextual model described above through a 

multiscale approach which consists of three steps: 

1) Extraction of the dominant colors; 

2) Crude segmentation at the lowest scale; 

3) A recursive process to adjust the crude segmentation results 

using a multiscale approach. 

3.1 Extraction of Dominant Colors 

A uniform color region is selected according to the human 

observation. And the wavelet transform is applied to the region. 

The mean values of wavelet coefficients in the low frequency 

bands of the RGB three channels is used as the color feature for 

the dominant colors ),,1( Mkkc . Repeat the above process 

until all the dominant colors according to the human 

observation are extracted.  

3.2 The Crude Segmentation 

We started with a large block size S(1) S(1), Denote the set of 

blocks at scale r by ( )rS , 1, ,r R , whereR is the maximum 

scale set by the user. We chose R  as the scale at which one 

block is a single pixel in our applications. The dominant color 

in each crude block is computed as following: 

)|(maxarg
,2,1

kij
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  The three variances of wavelet coefficients in the three high 

frequency bands of the luminance component of the block is 

used as the texture feature for the block, and the uniform factor 

is defined as: 
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As we know if the block is with uniform texture, the 

factor ),,( HH

d

HL

d

LH

d ijijij
s  will be around 1. And if an initial 

block which is satisfied with the following two conditions: 

2211 ),,( TsT HH

d
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The block will be judged as a smooth block; otherwise this 

block is considered as nonuniform. Here c

k
 and LL

ij
 are the 

variances of wavelet coefficients in the low frequency bands of 

the previously selected dominant color region and the current 

block respectively, and 
1t  usually takes 10 percent of c

k
, and 

T11=0.8 and T22 =1.2. And now we obtain a crude segmentation 

at the lowest resolution.  

3.3 Recursive Refining Segmentation 

At every increased scale, each block is subdivided into four 

child blocks, forming a quadtree structure. All child blocks 

inherit the colors of parent blocks as their initial colors. If the 

parent block and its 8 adjacent blocks are uniform, and are 

mapped into the same dominant color, and the block itself 

satisfies the conditions (8) and (9), then the current block is 

considered as smooth; otherwise it is nonuniform. For smooth 

blocks, they inherit the colors of their parent blocks. But for 

edge blocks, the color distribution should be re-computed 

according to equation (1). During the segmentation LH

t
,

HL

t
and HH

t
 should be re-computed at each stage because the 

uniform texture region need to be subsampled by 2 at every 

increased scale. This is because at every increased scale, the 

size of the block will become small, the metric gauge to decide 

whether the block is smooth or not should also be changed. 

Repeat the above process, until the highest resolution is 

reached. 
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For the highest resolution, the block is degenerated to a 

single pixel, we set the current pixel to one of the colors of its 8 

neighbor pixels which is closest to the central pixel. 

4 Experimental Results 

In this paper we mainly focus on the segmentation of color 

textile images. Fig.3 shows the segmented results of three 

algorithms. In order to compare the segmented results, we 

detect the edges from the luminance components of the 

segmented results. In the left column are the segmented results, 

and in the right are the edge maps. The first row is the 

segmented results based on the mean-shift algorithm [1], the 

second row and the third row are the segmented results using 

the multiscale block segmentation algorithm [2] and the 

algorithm described in this paper respectively. We can see that 

our edge images are much smoother than these two techniques. 

Even using a Gaussian low-pass filter at the previous stage, our 

segmentation results are also much better than these two 

methods. Because of the limitation of the length of the paper, 

there is no space to present many other examples. The last row 

in Fig.3 shows the segmentation results based on our method 

after the Gaussian low-pass filtering 

5 Conclusions

In this paper, we proposed a contextual model which can 

effectively model the complex boundary behavior of color 

textile images. The multiscale approach is used to solve the 

conflict between boundaries localization and high resolution 

segmentation. Experimental results show that our algorithm can 

achieve a high quality edge images when tested on color textile 

images with the texture noise compared with other 

segmentation algorithms. 
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