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Dom. Univ. de St Jérôme, F13013 Marseille

ABSTRACT

Parametric estimation of non-Gaussianmultidimensional pro-

bability density function (pdf) is a difficult problem that

is required by many applications in signal and image pro-

cessing. A lot of efforts has been devoted to methods from

multivariate analysis such as Principal or IndependentCom-

ponent Analysis (PCA and ICA). In this work, we introduce

an alternative solution based on a very general class of mul-

tivariate models called ‘copulas’. Useful copulas models for

image classification are used in the frame of multidimensio-

nal mixture estimation arising in the segmentation of multi-

component images, when using a vectorial Hidden Markov

Chain (HMC).

1. INTRODUCTION

The aim of this paper is to introduce copulas for multi-

variate modelling in the framework of statistical image seg-

mentation and to compare this approach with other methods

coming from multivariate data analysis.

The main problem of multicomponent images and of

their statistical processing is the choice of a relevant sta-

tistical model for the relationships between the components.

Segmentation procedure of scalar data usually makes the as-

sumption that the expected classes differs from each other

by a mean level � and an inner degree of dispersion � . The
Gaussian hypothesis is an illustration of this a priori know-
ledge on the classes, and the use of Gaussian vectors for

multivariate data shows the same implicit assumption for

multicomponent images. This assumption can be very res-

trictive since the difference between the classes can depend

on the ways the components are linked (independently of �
and � ). Moreover, if the abundance of univariate parametric
models enables to manage deviance to normality, possibi-

lities are far more restricted for multivariate models espe-

cially when we want to respect some constraints on the law

of each component (due to physical knowledge about the

involved phenomena).

Copulas are a statistical tool used for the modelling and

estimation of dependence between randomvariables [1], that

gives a general answer to such problem. It enables to widen

the ability of multivariate modelling and to keep the same

methodology as the one previously used with HMC [2]. It

also brings out the influence of dependence between the

components for the characterization of the classes.

This paper is organized as follows. In next section, the

HMC approach and the estimation methodology are brie-

fly recalled. We then introduce copulas in Section 3, and

present some useful models for image analysis. Section 4

discusses estimation methods for multivariate data. In sec-

tion 5, the methods are illustrated on a multispectral image

from a CASI sensor. Conclusions are drawn in section 6.

2. HMC AND UNSUPERVISED ESTIMATION

The estimation principle is recalled here to make the pa-

per self-contained (see [2]). The pixels of the � layers of a

multicomponent images are first transformed into 1D chains

using a Hilbert-Peano scan on each image. Hence, we get�
series of � data, denoted by � � � � � � 	 	 	 � � 
 � , where

� �  � � � � � 	 	 	 � � � � , � � � � �
and � is transposition.

The objective is to classify each �  into a set of � classes� � � � � � 	 	 	 � � � � in order to obtain the segmented chain� � � � � � 	 	 	 � � 
 � . The image is then reconstructed from �
by using an inverse Hilbert-Peano scan.

Assuming that � comes from a HMC [3], � is the hidden
process which can be recovered by Bayesian estimation pro-

cedures. This probabilistic approach is possible if we know

the law of the random vector � �  � � � � � 	 	 	 � � � � condi-
tionally on the state �  . In the case of unsupervised seg-
mentation, the distribution  � ! � � � is unknown. There-
fore, we have to estimate the following sets of parameters

( � � " � # � � ) : (i) the transition matrix $ with entries% & ' ( & ) ; (ii) the observation densities, i.e. the parameters of
the � � -dimensional distributions * & ' .
The estimation of all the parameters is usually achieved

by an iterative search of the Maximum Likelihood Estima-

tor (MLE), like EM algorithm and its variants as Stochastic

EM algorithm [4]. We use here another one called Itera-

tive Conditional Expectation (ICE), which uses the condi-

tional expectation of well-suited estimators from the com-
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plete data � � � � � [5].
This algorithm faces the problem of estimating the mul-

tidimensional pdf arising in the multicomponent HMC mo-

del. If Gaussian densities are considered, law parameters

can easily be estimated from the first order moments of a

� -dimensional sample. However, in a number of image
modalities, the noise can not be properly modelled by Gaus-

sians. Moreover, the shape of the distribution of each class

in the different layers can vary (e.g. multisensor case). One

solution is to use copulas, which are a general tool for mo-

delling multidimensional pdf.

3. MULTIDIMENSIONAL PDF WITH COPULAS

A (bivariate) copula is a cumulative density function

(cdf) on the unit square with uniform margins. Such func-

tions enables to give an exhaustive description of the depen-

dence between two real random variables. The clearest way

to illustrate it is the Sklar’s existence theorem which clari-

fies the link between marginal laws and the joint law [1] :

Let � � � � � be two real random variables, with (respectively)
cdf 	 � and 	 � . Let 	 be the corresponding bidimensional
cdf on 
 � , then 	 has a copula representation, i.e. there
exists a copula � such that

�  � �  � � 
 � 	 �  � �  � � � � � 	 � �  � � � 	 � �  � � � � (1)

Moreover, the copula is unique if 	 � and 	 � are conti-
nuous. If the copula is differentiable, we deduce directly

from (1) the relationship between the pdfs of the variables

(noted with lowercase letters) :

� � � � �  � �  � � � � � �  � � � � �  � � � � � � � � 	 � �  � � � 	 � �  � � � � (2)
with � � � � denoting the derivation toward the two coordi-
nates. � � � � � � � is called the density of the copula.
These results are also available for a cdf 	 on 
 � and

related marginals 	 � � � � � � 	 � . If we use a copula for model-
ling a multivariate variable � � � � � � � � � � � � � � , we need
first to specify the marginal laws of each � � . The latter can
be known from a priori knowledge or by univariate statisti-
cal analysis of training data sets. Then, a copula is needed

to construct the joint law of � . For illustration purpose and
latter use in experiments, three copulas are now presented.

Product copula ( � � ) - The product copula is defined by
� � � � � � � � � � � � � � � � � � � � � , and corresponds to the case
of independence between the components since the density

of � is written � � � � � � � �� � � � � �  � � , where � � is the
density of � � .
Gaussian copula ( � � ) - For a multivariate Gaussian mo-
del  � ! � " � , with mean ! � 
 � and variance matrix

" � � # $ % � � & $ � % & � , two assumptions are made : (i) the mar-
gins are univariate Gaussian variables with law  � ' $ � # �$ $ � ;

(ii) the dependence structure is such that we have a Gaus-

sian joint law. The Sklar’s theorem explains how to get rid

of the Gaussian margins. We write ( as the correlation ma-
trix deduced from " , ) the identity matrix of 
 � , and * � �

� + , � � � � � � � � � � + , � � � � � � with + the cdf of the normalized
Gaussian density. If we invert Eq. (2) that gives the relation

between the density of the underlying copula and the den-

sity of a Gaussian vector, we get

� � � � � � � � � � � � � � - ( - , ./ 0 , ./ � 1 2 3 4 5 . , 6 7 1 � (3)

The Gaussian copula is very useful since computations are

rather easy and the dependence structure is very intuitive,

based on the usual correlation coefficients.

Student copula ( � 8 ) - In the same way, we can compute the
Student copula by exploiting the multivariate Student law,

with 9 degrees of freedom. The computation of the under-
lying copula is manageable since each margin is a univariate

Student law with 9 degrees of freedom. The density of the
Student copula is then

� 8 � � � � � � � � � � � � - ( - , ./ : � ; < �� � : � ; � � � , �
: � ; < �� � �

= � > ? �
; @ � ( , �

@ � , A B C/
� �� � � � > ? �

; D
�� � , A B ./

(4)

with @ the vector with components D � � E , �
� � � � � . : is

the Euler’s Gamma function, E � is the cdf of a (univariate)
Student law with 9 degrees of freedom, and ( is a correla-
tion matrix as for � � .
Fig. 1 shows examples of 2D densities obtained with

fixed Gamma margins for the three kinds of copulas. The

shape and scale parameters of the Gamma laws for the two

marginals were set to � > � F � G � F � and � G � F � G � F � . We can easily
observe from the contour plots that the iso-probabilities are

quite different, even for � � and � 8 copulas.
4. INFERENCE OF MULTIDIMENSIONAL PDF

Suppose we have an i.i.d. sample � � � � � � � � � � � H � of
vectors of dimension � and we want to estimate its dis-

tribution 	 I . � J J J � I C �  � � � � � �  � � . Before examining copu-
las, let us briefly recall the multivariate analysis viewpoint.

4.1. Parametric multivariate analysis

Several strategies are possible, depending on the assump-

tions made on the links between the components. The most

heavy-handed one is independence so that � is written as in
� � copula. A more sophisticated solution is to consider cor-
relations and consists in applying a PCA algorithm on the

data before densities estimation. This can be done by pro-

jecting � onto an orthonormal system defined by K so that
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(a) Product copula - � �
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(b) Gaussian copula - � �
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(c) Student copula - � �
Fig. 1. Bivariate densities with (a) independent Gamma margins, (b) correlated Gamma margins using a Gaussian copula
( � � � � � ) and (c) dependent Gamma margins with Student copula ( � � � � � , 	 � 
 � ). Margins are the same for the 3 pdfs.

the new data � � �  � � are decorrelated. Hence, we get
the following estimation :

� � � � � � � � � � �  � � ��
� � � � � � � �� � � (5)

However, ideally, data should be independent and this natu-

rally fits an ICA approach. The objective of ICA is to find a

linear transformation  � so that the new data � � �  � � �
are mutually independent. A solution can be find under the

assumption that the � �� components are not Gaussian. This
optimization problem requires the optimization of a ‘non-

Gaussianity’ criterion such as the kurtosis or the neguen-

tropy [6]. The density � can be reconstructed using a for-
mula similar to Eq. (5), replacing  by  � and � �� by � �� .
4.2. Estimation of copulas

Following the Sklar’s decomposition, we use a para-

metric model assuming for instance that the margins are

Gamma laws, and that the copula is gaussian.

 ! " # $ $ $ # ! % & ' � ( � � � ( ' � ) * ( � + � � � , � , � - �
. &  ! " � ' � � + � � ( � � � (  ! % � ' � � + � � ) * - (6)

Parameters + � characterize the margins and * defines the
copula.We propose to use the following two-step estimation

methodology (‘Inference For Margins’ - IFM [7]) :

1. compute the MLE /+ � of each margin from the 0
samples � ' �� � � , � , 1 and then create the new data set2 3 ( 4 ( 5 � � �  � ' �� � /+ � � .

2. compute theMLE /* from the new sample � 6 � ( � � � ( 6 � � .
Gaussian copula ( . 7 )Whatever the margins used, 8 can be
estimated by the following matrix

/8 � 
9
1:

� � � ; � ; < � � (7)

Student copula ( . = ) The MLE estimation of 8 can be com-
puted by solving a fix point equation, deduced from the first

order condition of the maximization of the log-likelihood.

The Gaussian estimator given by Eq. (7) can be used for the

initialization of the iterative search of the root.

The IFMmethod furnishes only an approximation of the

MLE since the global maximization of the likelihood is re-

placed by two successive (and easier) maximizations. Ne-

vertheless, the procedure gives good estimations and is easy

to implement. For its use in HMC, it is only required to

adapt the general frame of the ICE algorithm to this two-

steps estimation.

Remark 1 : One can then ask for the difference between the
use of a PCA analysis and of a Gaussian copula for the es-

timation of the multidimensional pdf. In the first case, we

estimate the laws of the principal components of the signal.

For instance, we make the assumption that the laws of the

principal components belong to an a priori parametric mo-
del, such as the Pearson’s system of distributions. It can be

seen from Eq. (5) that the densities of the margins are hard

to recover since we have to integrate over 0 > 
 variates,
whereas we directly identify the laws of the margins with

copulas and then the dependence structure (characterized

here by a matrix 8 ). So, in general, PCA does not furnish
an idea on the induced parametric shape for margins.

Remark 2 :We have to choose among numerous families of
copulas for the multidimensional reconstruction of the law,

whereas it was straightforward by ICA.

5. SEGMENTATION OF MULTISPECTRAL
IMAGES

This section is intended to illustrate the multidimensio-

nal pdf modelling capability of copulas. Hence, vectorial

HMC-based classifications have been applied on an airborne
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Fig. 2. Four bands of a multicomponent image. � � � � � � � .

hyperspectral CASI image, reduced to 4 bands through an

adapted projection pursuit method [8], see Fig. 2. The ori-

gnal image contains 17 spectral bands from 450 to 950 nm

and ground resolution is two meters.

Results fromACI (non-Gaussianity criterion fromHyväri-

nen [6]), and for product, Gaussian and Student copulas are

presented in Fig 3. In all the experiments, segmentations

have been achieved with 4 classes that should correspond to

forest, fields, roads and wasteland. Hence, the parameters to

be estimated by ICE correspond to a mixture of 4 classes in

a 4D space. Gamma laws have been chosen for independent

components in ACI, as well as for margins in copulas.

It is obvious that the classifications obtained are all dif-

ferent and this difference is only due to the way multivariate

densities are estimated. However, it is quite difficult, and

not the purpose of this work, to determine which result is

the more appropriate and should depend on the application

considered.

6. CONCLUSION

Copulas are a statistical concept representing the depen-

dence between random variables in a very general way. In

this work, copulas have been used to model multidimen-

sional pdf arising in the segmentation of multicomponent

images, when using a vectorial HMC-model. Three types of

copulas have been illustrated according to the segmentation

of a four spectral band images, and visually compared to the

segmentation obtained from ACI analysis. Such copulas are

not limited to the context of HMC and will be further inves-

Product Copula ACI

Gaussian copula Student copula ( � � � � )

Fig. 3. Segmentation results. The same colors have been
used for most similar classes.

tigated in a number of problems and models where multidi-

mensional pdf estimation is concerned.
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