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ABSTRACT

In this paper, we address the problem of tracking a near-

frontal view face and its facial features in a video 

sequence. To this purpose, a particle filtering scheme is 

proposed, where the distribution of observations is 

derived from an active appearance model. As in [8], the 

dynamics are adaptive in the sense that they are guided by 

a deterministic search, and the explored area of the state 

space is adjusted to the quality of the prediction. The 

number of particles is adapted accordingly, which enables 

a substantial gain in computing time. In order to account 

for occlusions, the observation model uses a robust 

distance measure. Experiments on real video show 

encouraging results. 

1. INTRODUCTION 

This work addresses the problem of tracking in a single 

video the global motion of a face as well as the local 

motion of its inner features. Note that in the applications 

targeted by this work, the person looks approximately in 

the direction of the camera. The face remains thus in a 

near frontal orientation, so that a 2D model of the face is 

assumed to be able to capture the expected variations. In 

the object tracking problem, the goal is to infer at each 

time step t the unobserved state of the object, denoted xt

, given all the observed data until time t, denoted z1:t

(z1,…, zt). When tracking a face in 2D, the unobserved 

state includes motion or pose parameters like the position, 

scale and orientation of the face; when facial features are 

also tracked, the unobserved state should contain 

parameters describing the face inner motion. The 

observed data zt consists of measurements derived from 

the current video frame such as greylevel patches. The 

tracking task then essentially consists in searching the 

current state xt  that matches at best the measurements 

zt in the current image.  

In a non-probabilistic formulation of the tracking 

problem, the state xt is usually seeked so as to minimize 

an error functional d [gimage(zt, xt); gmodel], e.g. an 

Euclidean or robust distance. The eigen-tracking method 

is based on such a principle [2]. Using principal 

component analysis, the Active Appearance Models 

(AAMs) encode the variations of face appearance by 

learning the shape and texture variations [3]. They enable 

thus the tracking of both global motion and inner features. 

In practice, tracking using the deterministic frame-by-

frame AAM search appears to work well while the 

lighting conditions remain stable and only small 

occlusions are present. However, large occlusions often 

make the AAM search converge to incorrect positions and 

loose track of the face.

In probabilistic formulations, the hidden state and the 

observations are linked by a joint distribution; this 

statistical framework offers rich modeling possibilities. A 

Markov dynamic model describes how the state evolves 

through time. An observation model specifies the 

likelihood of each hypothesized state. Based on such a 

generative model, Bayesian filtering methods recursively 

evaluate the posterior density of the target state at each 

time step conditionally to the history of observations until 

the current time. Stochastic implementations of Bayesian 

filtering are generally based on sequential Monte Carlo 

estimation, also known as particle filtering [5]. Particle 

filtering approximates the posterior state density by a set 

of random weighted samples (particles) at each time step. 

For video tracking, the CONDENSATION algorithm 

consists in propagating this sample set through time using 

a dynamic model and in weighting each sample 

proportionally to its likelihood function value [6]. This 

algorithm employs the Monte Carlo technique of factored 

sampling in order to recursively approximate the posterior 

state density. Approximation is done by means of the 

empirical distribution of a system of particles. The 
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particles explore the state space following independent 

realizations from a state evolution model, and are

redistributed according to their consistency with the 

observations, the consistency being measured by a 

likelihood function [6].

The idea proposed in this paper consists in combining

the AAM with the CONDENSATION stochastic search in 

order to augment its robustness to occlusions. Regarding

existing works we are aware of combining AAM with

temporal dynamics, they model facial behaviors in order 

to generate video-realistic animated faces (see e.g. [1]). In

those papers, the tracking itself uses the AAM frame-by-

frame search with no temporal dynamics.

In section 2, we present the proposed tracking

algorithm. In section 3, experimental results are shown on 

real video. Finally, in section 4, we draw concluding

remarks and discuss the perspectives opened by this work. 

2. PROPOSED SCHEME: AAM-BASED 

CONDENSATION

A face AAM is a statistical model which describes shape

and texture variations of the human face class [3]. The 

appearance variability is linearly modeled by a Principal

Component Analysis (PCA) of shape s and texture g:

(1)

(4)

where sm, gm are respectively the mean shape and texture, 

s, g are the eigenvectors of shape and texture covariance 

matrices. A third PCA is then performed on a 

concatenated shape and texture parameters b, to obtain a 

combined model vector c:

From the combined appearance model vector c, a new 

instance of shape and texture can be generated:

We propose to adapt the CONDENSATION algorithm

in combination with AAM to our tracking task in three

aspects, each being detailed below. For a good 

introduction, the reader is referred to the seminal paper of

Isard and Blake [6]. 

2.1. State space spans the global and inner motion of

the face

The state vector xt contains the parameters to infer about

the object:

the face global 2D pose pt = (tx, ty, , )T, representing

position, scale and orientation of the face. 

the facial actions, contained in the AAM shape and 

texture, which are themselves captured in a compact

way by the combined appearance parameter vector 

denoted ct. Our experiments suggest that retaining

only the first four modes of the appearance parameter

ct allows spanning the facial changes of interest and 

provides satisfying tracking results.

      The state vector xt = (pt, ct)
T is thus of dimension 8. 

2.2. AAM-based observation model

The observation model is based on sampled pixel grey

level patches and a previously trained AAM subspace; it 

consists of the likelihood p(zt | xt), according to which the 

particles are weighted in the CONDENSATION 

algorithm. This likelihood indicates the probability that a

hypothesized state xt = (pt, ct)
T gives rise to the observed 

data. This probability should be high whenever there is a

good match between:

the image patch sampled at the hypothesized pose and

shape, gim(pt, ct).

the hypothesized appearance of the face, given by the 

model texture gmodel(ct).

The adopted likelihood function has thus the following

form:

where C is the normalizing constant of this distribution,

and the texture distance d [;] is an error measure, summed

over all L pixels of both textures:

(5)

This error is weighted by the standard deviation l of each 

pixel, computed from training data. The error function ()

can be chosen in different ways:(2)
a simple square error function          yields a 

weighted Euclidean distance d[;] and a Gaussian 

density p(zt | xt);

a robust error function can be used instead (see e.g.

[5]); in our experiments, we tested the following

function:

(3)

(6)

where h is a fixed threshold above which the difference |x|

is considered to be an outlier. Such a robust measure

reduces the influence of occluded pixels, which would

otherwise dominate the total error measure (5) and rule

out a potentially good state candidate.

2.3. Adaptive dynamics

The state transition model p(xt | xt-1) is used in the

CONDENSATION algorithm in order to draw the 

particles approximating the predicted distribution.

Following the ideas developed in Zhou et al [8], the 
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dynamics used here are adaptive by having the following

model for state evolution:

(9)

(8)

 is the estimate of the state vector at the previous 

time step, 

1
ˆ
tx

the velocity vt = ( p, c)T indicates the predicted shift

in pose/appearance, 

the random component u is a vector of 8 independent

normal random variants having zero mean and unit

variance,

the diagonal matrix St = diag ( ,…, )

specifies the standard deviation of the random draw 

for each pose/appearance parameter.

)( xt

t
)( 4c

t

The predicted shift vt is obtained by an automatic AAM

search in the current frame (iterative gradient-like

adaptation) as in [3]. This search aims to compute the 

predicted pose and appearance parameters ( tp
~ , tc

~ ) that 

best approximate the target face in the current image. This 

optimization is initialized at the previous state 

estimate . The criterion to minimize is thus the norm

of the texture residue vector:

1
ˆ
tx

r (p,c) = gmodel( ) - g1
ˆ

tc im( , c )1
ˆ
tp 1

ˆ
t

where gim( , ) denotes the current image texture 

sampled at the previous state estimate . The optimal

successive corrections to apply ( p, c), are linear 

functions of the error vector:

1
ˆ
tp 1

ˆ
tc

1
ˆ
tx

p = Rp r(p,c) c = Rc r(p,c)

The matrices Rp and Rc can be precomputed from training

data, as in [3].

This deterministic search aims to focus the particle

drawing in a region that is most likely to contain good 

candidates, and thus reduce the volume of the state space

to explore:

tx
~ = ( tp

~ , tc
~ ) =  + ( p, c)1

ˆ
tx

T

According to the state transition model (7),

pose/appearance parameters are drawn around the

predicted state tx
~ = ( tp

~ , tc
~ ) with dispersions (standard

deviations) given by St. We consider, as in [8], adaptive 

dispersion given by:

( ,…, ) = R
)( xt

t
)( 4c

t t ( ,…, )
)(

0
xt )(

0
4c

where ( ,…, ) are fixed reference standard 

deviations, and the scaling factor R

)(

0
xt )(

0
4c

t is proportional to the

square root of t, with bounding values [Rmin, Rmax]:

where t is a measure of variance corresponding to a 

texture error averaged over the L pixels of the textures:
(7)

(7)(7)(13)

When Rt is large, the predicted distribution has a high

variance and requires therefore a large number of particles

to approximate it. In other words, the larger is the area of

the state space subregion covered by the predicted

distribution, the more particles are needed to explore it.

This suggests having an adaptive number Nt of particles,

using the formula:
(14)

where N0 is a fixed number of particles.

3. EXPERIMENTAL RESULTS 

The proposed method was implemented in non-optimized

C++ and tested on a PC running WinXP at 2.4 GHz with

512 Mb of RAM.

Results are first shown for a video sequence where a face

in near-frontal view undergoes large variations in pose

and expressions (see Figure 1). The tracking of both

global pose and facial features appears satisfying. Setting

N0 = 500, the number of particles Nt evolves between

about 20 and 80, and increases each time the change in

pose and/or appearance is rapid; using such adaptive

dynamics allows to process on average 2 frames per 

second. This represents a drastic improvement over a

method using a zero-velocity state evolution model, which

required 1000 particles to successfully track this sequence 

(according to experiments not shown here). 

(10)

(11)

Figure 1: AAM-based adaptive CONDENSATION tracking, for 

frames 015, 363 and 618. On each image, the drawn shape 

shows the estimated state; the model and image texture gmodel(ct)

and gim(pt, ct) are displayed in the lower right corner. The graph 

displays the variable number of particles Nt over 1600 frames. 

(12)
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The performance of our approach was also tested in 

presence of occlusions. We compared it with a purely 

deterministic AAM tracking. As is highlighted in the top

row of Figure 2, when the occlusion occurs, the

deterministic search appears to be trapped in an incorrect

local optimum, and the tracking diverges thus from that

moment. This problem is overcome by the stochastic

tracking: the occlusion induces a high texture error t for 

the predicted state tx
~ , and consequently the variance of 

drawn particles and their number Nt are increased (see the 

peaks in Figure 3). The particles cover thus a greater area 

of the state space which allows to correct the deterministic

search (bottom row of Figure 2). 

Figure 2: Tracking on a video sequence with occlusions, frames 

921 and 940. Top row: deterministic AAM tracking. Bottom 

row: CONDENSATION based tracking.

Figure 3: Evolving number of particles Nt on the video sequence 

with occlusions. The nearly full occlusion of frame 921 induces 

a high peak, while a partial occlusion induces a lower peak. 

4. CONCLUSION 

For the purpose of tracking the 2D global pose of a face 

and its inner facial actions, this paper proposes to combine

an adaptive particle filtering scheme with an active

appearance model. The state vector is composed of four 

pose parameters and four combined appearance

parameters. The likelihood measures the fit between the

hypothesized model texture and the image texture

sampled at the hypothesized location and shape; a robust

distance accounts for occluded pixels. Following the ideas

of [8], the dynamics in state space are guided by a

deterministic AAM search; this allows reducing

significantly the number of particles, which is only

increased when the AAM search fails to converge to a

satisfying solution. The experiments show that the

proposed algorithm can successfully track a face and its

facial actions undergoing quick motion and nearly full

occlusions.

On the basis of this work, several directions can now 

be investigated. On the one hand, training the tracking

system could be made easier, by learning the texture

model on the fly as in [8]. On the other hand, now that a

robust tracking system is available, we can study the

recognition of facial actions: the input being given by the

combined appearance parameters at each time step, 

different recognition approaches can be tested, from a

simple linear discriminate analysis on still frames, to

dynamic graphical models. In this regard, the particle

filter paradigm provides a natural inference framework for

richer models, for instance, the facial action to be 

recognized could be included as a discrete component of

the state vector [7]. 
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