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ABSTRACT 

Tracking human motion in monocular video is a 

challenging problem in computer vision. It has found a 

wide range of applications such as visual surveillance, 

virtual reality, sports science, etc. This project aims to 

develop a model-based human motion analysis system that 

can track human movement in monocular image sequence 

with minimum constraint. No markers or sensors are 

attached to the subject. Given a clip of the video, the first 

step is to manually fit the 3D human model to the subject 

in the first frame of the video. Then background 

subtraction is used to extract the human silhouette. We 

propose the silhouette chamfer as the main matching 

feature. Chamfer distance measure is carried out on the 

extracted subject silhouette. The silhouette chamfer 

contains both the chamfer distance and region information. 

Finally, we use discrete Kalman filter to predict the pose 

of the subject in each image frame. The update step uses 

Broydent’s method to optimize the predicted pose to fit 

the person’s silhouette by using the cost function. We use 

the gait database SOTON to test our system. The image 

sequences contain human walking in both the indoor and 

outdoor environment. The motion tracking results 

demonstrate that our system has an encouraging 

performance. 

1. INTRODUCTION 

Video-based 3D human motion tracking is an important 

and challenging computer vision problem. The scope of 

this research area covers the detection, tracking, and 

perhaps interpretation of human movement in the image 

sequence. It has attracted many interests due to its wide 

range of potential applications. A visual surveillance 

system can detect people and monitor their activities. This 

can be used to provide security control in places such as 

car park. In sports science, the posture and gait analysis 

can help to train athletes and monitor their performance. 

Similar systems may also be used for medicine purpose. 

Realistic human body animation can also benefit from the 

knowledge of motion tracking. Typical applications 

include computer games, movie production, etc. Motion 

analysis is also useful in retrieval and automatic 

annotation of human activities in video database. 

Many computer vision researchers have made great efforts 

in analyzing and recognizing human motion in image 

sequence. The video may be shot by one camera or by 

several cameras from different viewpoints simultaneously. 

The systems of Hogg [1] and Rohr [2] are specialized for 

a one degree of freedom (DOF) walking model. Edge and 

line features are extracted from images and matched to a 

cylindrical 3D body model. Wachter and Nagel [3] also 

use the model-based motion tracking approach. Body 

parts are modeled by right-elliptical cones. All the DOFs 

are determined by an iterated extended Kalman filter. 

Recently, Ning et al. [4] use a 12 DOFs 3D human model 

for motion tracking. Pose estimation relies on both 

boundary match and region match. A divide-and-conquer 

search strategy is adopted. Bregler and Malik [5] recover 

the 3D human motion information under the orthographic 

projection by marking the body segments in an initial 

frame. For the special complexity of human motion, the 

existing research methods lay much limitation on the 

human subject, such as a uniform and quiescent 

background, parallelism of human motion direction to the 

image plane, and skin-tight clothing of human [6]. 

In section 2, we will describe the 3D human model. The 

silhouette chamfer and model gradient feature extraction 

processes are described in section 3. The tracking process 

and the tracking fault correction are described in section 4. 

All results are shown and discussed in section 5 and 

finally a conclusion is drawn. 

2. HUMAN MODEL 

Our human body model consists of a kinematic skeleton 

of articulated joints controlled by angular joint parameters 

x. The 3D human body model is constructed of truncated 

cones. Each truncated cone represents one body part. The 

human body contains 12 rigid body parts, including torso, 

head, upper arms, forearms, thighs, calves and feet. The 

posture of a walker can be defined by a 12-dimensional 

vector: 

where X and Y represent the coordinates of the global 
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position,  is angular joint parameter (L=left, R=right, 

S=shoulder, E=elbow, H=hip, K=knee, A=ankle). 

3. FEATURE EXTRACTION 

3.1. Silhouette Chamfer 

The distance transform (DT) has been applied in many 

image analysis tasks including shape description, feature 

detection, skeletonization, segmentation, and multi-scale 

morphological filtering. Generally, the chamfer distance 

with edge detection can be used suitably to measure the 

similarity between the model part and image data [7]. 

However, if we only consider the chamfer distance with 

edge as the only feature, it is insufficient in some 

circumstances. A typical example is shown in Figure 1. 

Although the model part is obviously wrongly fitted to the 

image data, the system still settles with this result due to 

the high matching score obtained by the pose optimization 

function. This phenomenon can be clearly illustrated by 

magnifying the image. A gap appears between the hand 

and the leg in the upper part of the image, while another 

gap appears between the legs in the lower part of the 

image. It is found that ambiguity easily appears when two 

body parts are close to each other. 

To avoid such ambiguities, region information is 

considered in our approach. We propose the silhouette 

chamfer as the main matching feature. Chamfer distance 

measure is carried out on the extracted subject silhouette. 

The silhouette chamfer contains both the chamfer distance 

and region information. The chamfer algorithm searches 

for the best fit of edge points from two different images. 

Image 

silhouette

Model data segment

Model 

silhouette 

segment

Figure 1 A typical ambiguity: 

a model part falls into the gap 

between two body parts in the 

image. 

Figure 2 Model 

segment falls in 

between the body parts 

In Figure 2, the model segment falls in between the body 

parts. Unlike using chamfer distance, this model segment 

is judged to be poorly fitted under the pose evaluation 

function when using the silhouette chamfer.

The silhouette image is extracted from the image sequence. 

The silhouette represents the presence of a feature. The 

feature templates are generated by the human model pose 

optimization process. They are grouped as the human 

model projected silhouette. The pixel values are the 

distances of the template features to the nearest features in 

the image. The lower the distance, the better is the result 

of matching the image to the template at this posture. 

The distance from a predicted model point pi(x) to a given 

silhouette Sg can be determined by the chamfer measure 

between model prediction pi(x) and point si on the given 

silhouette Sg:
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If Esi is low, the human model is satisfactory matched. The 

gradual and long-range characteristics make the chamfer 

distance mapping a suitable evaluation measure to guide 

the search process. The overlapping area and chamfer 

distance stabilize the estimation and drive it towards the 

desired result. The cost term has the desired gradual 

property. It is good for recovering from global position 

tracking failure. 

3.2. Model Gradient Information 

The gradient of the model body part edge segment is 

assumed to be approximately equal to the corresponding 

image gradient. The model gradient at a position (x, y)

depends on the distance d to the nearest model edge at 

state S.

A model edge segment has been projected onto the image 

plane. The model gradient magnitude can be computed as 
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where A is the contrast factor, which is set equal to the 

maximum expected gradient value.  corresponds to the 

expected edge width. 

The model gradient field h is approximately equal to the 

measured image gradient: 
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We use the gradient magnitude values in the measurement. 

The model gradient field h is approximately equal to the 

measured image gradient. The model gradient cost term is 

defined as 
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where m is the total number of the summation terms. 

4. TRACKING PROCESS 

Whether continuous or discrete, the optimization process 

is often carried out by the minimization of a cost function. 

Our cost function employs a combination of region and 
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edge information. We define the cost function as 
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where I represents the image frame, Es is the silhouette 

chamfer cost term, Eg is the model gradient cost term, rs

denotes the size of the silhouette image region, rg denotes 

the size of the gradient image region, w1, w2 and w3 are the 

weighting factors, and x are the changes of joint angles. 

4.1. Similarity Measure 

We present an operator Ms to measure the shape similarity 

between two binary images. 
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where  denotes the cardinal number of set. SM is the 

set of pixels of the projected model silhouette and ST is the 

set of pixels of the image object silhouette. Superscript c 

represents the inverse silhouette image. 

It is known that Ms will be low when the silhouette of the 

model closely matches the object silhouette in the image. 

4.2. Tracking Fault Correction 

This measurement is used for correcting and smoothing 

the estimated joint trajectories. We compute the mean Mm

and the standard deviation s of the similarity measure 

for all frames. 

The tracking fault appears when the similarity measure of 

a particular frame is larger than the threshold (Equation 7). 

The faulty joint angle is replaced by the linear 

interpolation of joint angles (Equation 8) of the previous 

and next frames. 

)()( sms MtM       ( 7 ) 

)()(
)()(

)( ttt
tt

tt
tnew

   ( 8 ) 

(t) is the estimated joint angle at frame t. t  represents 

the index of previous frame, and t  represents the index 

of next frame. 

5. RESULT AND DISCUSSION 

To verify the effectiveness of our approach, we have 

carried out a large number of experiments on video 

sequences with both indoor and outdoor scenes. We use 

the gait database SOTON [8] to test our human motion 

tracking system. The database is stored as a pre-cut digital 

video (DV) file format. Each record contains at least one 

complete gait cycle. A camera captures the image 

sequence with a stationary indoor or outdoor background 

at a rate of 25 frames per second and the resolution of 720 

x 480 pixels. 

The result (Figure 3) is shown from left to right 

representing the progress in time. The first row shows the 

raw image frames, while the second row shows the subject 

silhouette obtained by the background subtraction process. 

The third row shows the projected silhouette of the 

tracked model. The matching similarity measure is 

showed in the last row. The value close to 0 means a good 

similarity of matching. Conversely, the value close to 1 

means a poor similarity of matching. 

Frame 20 Frame 28 Frame 36 Frame 44 Frame 52 Frame 60 Frame 68 

0.307862 0.226985 0.232636 0.352252 0.280102 0.373235 0.274257

Figure 3 Tracking result of outdoor scene 029e106s07R 
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Figure 4 shows the similarity measure. The mean of 

similarity measure is 0.2968 and the standard deviation is 

0.0568. The tracking fault detection threshold is 0.3536. 

There are 11 faulty frames out of a total of 71. The fault rate 

is 15.5%. Large continuous tracking faults appear in frames 

47-50. Figure 5 shows the tracked angles of the limbs. Each 

data point is an average of 3 frames. Tracking faults are 

marked in the figure. All trajectories move abnormally in 

frames 47-50. The left and right hip trajectories are 

intersected which means that two legs overlap. 

Figure 4 Similarity measure of outdoor scene 029e106s07R 

The corrected limb trajectories are shown in Figure 6. The 

continuous tracking fault is improved from frames 47 to 50. 

The left hip continues to swing after the legs overlap. 

Similarly, right hip continues to lift. The limb trajectories 

are improved by applying the tracking fault correction. 

Figure 5 Tracked angles of the limbs 

Figure 6 Tracked angles of the limbs with faulty values reassigned 

The similarity measure provides important information for 

the identification of tracking faults. The tracking fault 

detection threshold is the sum of the mean and standard 

deviation of the similarity measure over the whole video. 

Based on this threshold, the faulty frames are identified. 

The joint angle of the faulty frame is recomputed and 

replaced by the linear interpolation of joint angles in 

neighboring frames. The adjusted limb trajectories are 

improved. Most of the continuous tracking faults appear 

when the legs overlap. By applying the tracking fault 

correction process, the tracking fault can be corrected. More 

results are available at 

www.it.cityu.edu.hk/~klchan/mphil.html. 

6. CONCLUSION 

We have demonstrated that our system is able to track 

human motion in a monocular image sequence. The gait 

database SOTON is used to test our system. The database 

contains the image sequences with a stationary indoor and 

outdoor background. The tracking fault correction amends 

the limbs trajectories and results in smooth detected motion. 
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