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ABSTRACT
We propose an coherent approach to extract key-frames within

a video shot for object-based video segmentation. A unified

feature space is first constructed to represent video frames

and visual objects simultaneously in a joint spatio-temporal

domain, and key-frame extraction is formulated as a fea-

ture selection process that aims to maximize the cluster di-

vergence of video objects by selecting an optimal set of

key-frames. Specifically, two different criteria are used to

achieve joint key-frame extraction and object segmentation.

One criterion recommends key-frame extraction that leads

to the maximum pairwise interclass divergence between ob-

jects in the feature space. The other aims at maximizing

the marginal divergence of objects in each frame. Simula-

tions with both synthetic and real video data manifest the

efficiency and robustness of the proposed methods.

1. INTRODUCTION

Object-based video segmentation is a fundamental step to-

wards content-based video analysis. Recently, a statistical

model-based segmentation method was developed to coher-

ently segment video objects in a joint spatio-temporal do-

main [1]. In this method, all frames in a video shot are

considered as one entity for the model estimation that sup-

ports object-based segmentation. In order to approximate

the nonlinear nature of motion patterns, the work in [2]

suggests to split a video shot into a succession of block

of frames (BOF) with certain overlaps, and the model esti-

mation and object segmentation are performed within each

BOF individually, where the motion could be approximately

linear. All video frames or BOFs may contain consider-

ably redundant information regarding statistical modeling

of video objects in the feature space. Outliers, such as noise

and insignificant objects that might randomly appear in a

video shot, could also cause more overlaps between clus-

ters. These factors may degrade the accuracy of the model

estimation, and thus deteriorate the performance of object

segmentation.
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In order to improve the efficiency and robustness of sta-

tistical model-based object segmentation, we recently pro-

posed a so-called combined key-frame extraction and object-
based video segmentation approach in [3], where the model

estimation is conducted based on a set of pre-selected key-

frames. Compared with the methods in [1, 2], this approach

can significantly reduce the computational load and also en-

hance the performance of object segmentation. However,

the method in [3] separates key-frame extraction and object

segmentation as two sequential steps, where the relationship

between key-frames and objects is not revealed. This may

still lead to a redundant feature space where the overlapping

problem cannot be mitigated effectively.

In this work, we propose a coherent approach to ex-

tract video key-frames for object segmentation. A unified

feature space is first constructed to represent video frames

and objects coherently in the joint spatio-temporal domain.

Then key-frame extraction is formulated as a feature selec-

tion problem that aims at maximizing the cluster divergence

in the feature space. Specifically, two criteria are used for

key-frame extraction to optimize object segmentation. One

is the maximum average interclass Kullback Leibler dis-

tance (MAIKLD), the other is the maximum marginal di-

vergence (MMD) [4]. MAIKLD considers both temporal

and spatial correlations between frames, and requires com-

binatorial search of key-frames. MMD tries to maximize

the variance to the mean density of all object classes in each

frame individually, so that it can be implemented more ef-

ficiently than MAIKLD. Compared with MAIKLD, MMD

may generate less representative key-frames for object seg-

mentation. Generally, the proposed methods can provide

compact and salient key-frame sets that support robust ob-

ject segmentation.

2. UNIFIED FEATURE SPACE

Video key-frame extraction and object segmentation are usu-

ally based on different feature subsets. A unified feature

subset is needed for coherent key-frame extraction and ob-

ject segmentation. This feature subset should contain both

spatial and temporal information. In this work, we use a

pixel-wise 7-D feature vector suggested in [3], including
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(Y, u, v) color features, spatial location (x, y), time t, as

well as intensity change over the time to provide additional

motion information.

Generally, the frames within a video shot represent a

spatially and temporally continuous action, and share the

common visual and often semantic-related characteristics,

leading to tremendously redundant information in the fea-

ture space. As mentioned before, outliers could cause more

overlaps between major objects (clusters). One example is

shown in Fig. 1, where a video shot of N frames contains

three objects. Since we fix the feature dimension, we want

to reduce the overlapping problem by extracting a set of

key-frames that can effectively support object representa-

tion in the feature space. Then the model estimation and

object segmentation can be efficiently accomplished based

on these key-frames.
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Fig. 1. A unified feature space.

Even though object segmentation is usually an unsuper-

vised process where no prior knowledge is available, we still

can extract the most salient and useful key-frames via clus-

ter divergence measurements in the feature space. Thus, in

this work, key-frame extraction is formulated as a feature
selection process where key-frames are extracted by maxi-
mizing the cluster divergence regarding different objects.

3. MAXIMUM AVERAGE INTERCLASS
KULLBACK LEIBLER DISTANCE

Kullback Leibler distance (KLD) [5] is one often used diver-

gence measurement. Given two probability densities pi(x)
and pj(x), the KLD between them is defined as:

KL(pi, pj) =
∫

pi(x) ln
pi(x)
pj(x)

dx, (1)

KLD is usually not a symmetric distance measurement and

can be symmetrized by adding KL(pi, pj) and KL(pj , pi)
together. Ideally, the larger the KLD, the more separabil-

ity between clusters. If there are M clusters, the average

interclass KLD (AIKLD) is defined as:

D̄ = C

M∑
i=1

M∑
j>i

[KL(pi, pj) + KL(pj , pi)], (2)

where C = 2
M(M−1) .

Let X = {xi, 1 ≤ i ≤ N} with cardinality |X| = N
be an original video shot with N frames and M objects. Let

Z = {x∗
i , 1 ≤ i ≤ N∗} be any subset of X with cardinality

|Z| = N∗ ≤ N . Then key-frame extraction is aimed to find

a X∗, which is one of Z, so that D̄ can be maximized:

X∗ = arg max
Z∈X,|Z|≤N

D̄Z, (3)

where D̄Z is the AIKLD of M objects within Z in the 7-

D feature space. Maximum AIKLD (MAIKLD) is optimal

in the sense of minimum Bayes error [6]. Nevertheless, it

is not easy to find an optimal solution, especially when N
is large. A computationally efficient suboptimal solution is

more preferred in practice. In this work, a combinatorial

feature selection method, i.e., Sequential Forward Floating

Selection (SFFS) [7], is used to extract video key-frames. In

the following, we call the frames to be tested for key-frame

extraction key-frame candidates.

For simplicity, we do not begin with all frames in X,

and apply the method in [8, 3] to extract N
′ ≤ N ini-

tial key-frame candidates (still redundant), where a simi-

larity measurement based on the framewise 2-D Hue and

Saturation (HS) color histogram is used. Then the Gaus-

sian mixture model (GMM) is used to model video objects

coherently in the unified feature space based on these key-

frame candidates. The iterative Expectation maximization

(EM) algorithm [9] is applied with the minimum descrip-

tion length (MDL) model selection criterion [10]. After the

model estimation, the objects in all key-frame candidates

are segmented out using the maximum a posteriori crite-

rion. Then SFFS is applied to extract key-frames that max-

imize AIKLD of the objects. SFFS is initialized via the

Sequential Forward Selection (SFS) method to generate a

combination that comprises 2 key-frame candidates. The

algorithm is stopped when N∗ is greater than or equal to a

threshold (e.g., N
′
/2), or the iteration reaches a given num-

ber (e.g., 20).

The proposed segmentation method has several signifi-

cant advantages: (1) It is computationally efficient based on

a small set of key-frames. (2) The optimal or near-optimal

set of key-frames can be extracted for robust object seg-

mentation. (3) The algorithm is flexible without significant

data-dependent thresholds. Nevertheless, SFFS may not be

efficient enough when N
′

is large.

4. MAXIMUM MARGINAL DIVERSITY

In order to further improve the key-frame extraction pro-

cess at a lower computational complexity, we also suggest

another method based on the marginal cluster divergence in

each key-frame. In a recent work [4], a maximum marginal

diversity (MMD) criterion is proposed for efficient feature
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selection with very simple computations. Under certain con-

straints, MMD is equivalent to the infomax principle [11]

that is also optimal in the sense of minimum Bayes error. In

the context of classification, the infomax principle indicates

that any feature selection method should select certain fea-

tures that maximize the mutual information (MI) between

the features and class labels [4]. When the infomax principle

is applied to key-frame extraction and object segmentation,

the objective function is defined as:

X∗ = arg max
Z∈X,|Z|≤N

I(Z, Y ), (4)

where X, X∗, and Z are defined as (3), and I(Z, Y ) is the

MI between Z and the class label Y = {1, 2, · · · ,M}. It

was derived in [4] that:

I(Z, Y ) = EY [KL(p(Z|Y = y), p(Z))]

=
N∗∑
i=1

MD(x∗
i ) + ε, (5)

where

MD(x∗
i ) = EY [KL(p(x∗

i |Y = y), p(x∗
i ))],

ε =
N∗∑
i=2

I(x∗
i ;x

∗
1,i−1|Y ) −

N∗∑
i=2

I(x∗
i ;x

∗
1,i−1), (6)

and x∗
1,i−1 = {x∗

1,x
∗
2, · · ·x∗

i−1}. MD(x∗
i ) is called the

marginal diversity (MD) [4], which means the variance of

the mean density. ε shows the information of class labels

conveyed in the MI between features.

The analysis in [4] indicates that the solutions of MMD

and infomax are equal when ε = 0, which means the mu-

tual information between features is not affected by class la-

bels. As generalized in [4], this condition is originated from

the recent researches about image statistics, which suggest

that a rough structure of pattern dependencies between some

image features follows general statistical laws that are inde-

pendent of class labels. Although this might not be always

strictly held, at least it proves that MMD could be optimal

under such condition.

When implementing MMD, similar to MAIKLD, key-

frame extraction is performed after the GMM model es-

timation. MMD considers the cluster divergence in each

key-frame candidate, and extract N ∗ of them that have the

largest MD values. This process considerably mitigates the

computational load. N∗ could be predetermined, or be adap-

tively determined given a threshold of the MD value. In the

simulation, we set the average MD of all key-frame candi-

dates as the threshold. A key-frame candidate is extracted

as the key-frame if its MD is greater than the threshold.

MAIKLD tries to maximize the expectation of the pair-

wise inter-class divergence, while MMD criterion aims at

maximizing the average divergence to the mean density. Ac-

cordingly, they lead to different results although both of

them could be lower bounded by Bayes error. MAIKLD

should result in more representative key-frames regarding

video objects than MMD because a large variance of the

mean density cannot guarantee good separabilities between

clusters. However, MMD is faster than MAIKLD because

no combinatorial search is necessary.

5. SIMULATIONS AND DISCUSSIONS

Fig. 2. A synthetic video (the first row) and a real video (the

second row). The frame size is 176 × 144.

Simulations are performed on a computer with 3.2GHz

CPU and 1GB memory. The proposed methods are tested

on both synthetic and real video sequences as shown in

Fig. 2. The purpose of using a synthetic video is to numer-

ically evaluate the object segmentation performance, where

we calculate segmentation accuracy, precision, and recall
with respect to all moving objects. The first row of Fig. 2

shows three frames in the synthetic video where an elliptic

object is moving diagonally from the top-left to the bottom-

right corner, and its size is increasing simultaneously. A

rectangular object is moving from right to left horizontally.

Additionally, some Additive White Gaussian Noise (AWGN)

is added to the synthetic video.

We denote the method in [3] as Method-I, and two pro-

posed methods as Method-II (MAIKLD) and Method-III

(MMD). The numerical results of the three methods on the

synthetic video are shown in Fig. 3. It can be seen that

Method-II outperforms Method-I although Method-II uses

less key-frames for object segmentation. Method-III uses

the same number of key-frames as method-II, but its perfor-

mance is inferior to that of Method-II. This indicates that

Method-II can extract more representative and salient key-

frames regarding the video objects than Method-III. Both

Methods-I and -III result in low recalls due to the fact that

the extracted key-frames do not support accurate model esti-

mation. Method-III slightly outperforms Method-I because

Method-III uses spatial information to characterize both key-

frames and objects in the feature space.

We also compare three methods on the real video shown

in Fig. 2. The number of the initial key-frame candidates

and the extracted key-frames are listed in Table 1. It is
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Fig. 3. Numerical results: dotted, solid, and dashed lines indicate results of Methods-I, -II, and -III, respectively.

Table 1. Key-frame numbers (KFN) and computation time (CT).

Video sequences Method-I Method-II Method-III
KFN CT (s) KFN CT (s) KFN CT (s)

Synthetic (36 frames) 19 169 9 186 9 175

Real (150 frames) 16 187 8 210 9 193

Method-I

Method-II

Method-III

Fig. 4. Segmentation results of the real video based on the

same number of key-frames (e.g., 8 key-frames).

shown that Methods-II and -III slightly increase the com-

putational load compared with Method-I, but generate more

compact and representative key-frames. In order to compare

the three methods in terms of their effectiveness of key-

frame extraction for object segmentation, we fix the num-

ber of extracted key-frames to be 8. Fig. 4 illustrates the

segmentation results of the three methods. It can be seen

that Methods-II and III significantly outperform Method-I

that extracts the key-frames only using the framewise color

histogram. Method-II extracts the key-frames by consid-

ering joint spatio-temporal information in the unified fea-

ture space, and Method-III focuses on the spatial informa-

tion to characterize key-frames and objects in the feature

space. Both Methods-II and -III produce more representa-

tive key-frame sets for object segmentation than Method-I,

as demonstrated by the segmentation results.

6. CONCLUSIONS

This paper presents a coherent approach to extract video

key-frames for robust object segmentation within a video

shot. Key-frame extraction is formulated as a feature se-

lection process that aims at maximizing two divergence-

based criteria, i.e., MAIKLD and MMD, in the unified fea-

ture space. In the context of object segmentation, the pro-

posed approach explicitly reveals the inherent relationship

between key-frames and objects in a video shot. We are de-

veloping an analytical approach to further address this issue.
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