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Abstract 

Accurate foreground segmentation is a difficult task due to such 

factors as illumination variation, occlusion, background 

movements, and noise.  In this paper we present a novel 

adaptive transform domain approach for foreground 

segmentation in video sequences.  A set of DCT-based features is 

employed to exploit the spatial and temporal correlation in the 

video sequences.  We maintain an adaptive background model 

and make a decision based on the distance between the features 

of the current frame and that of the background model.  

Additional higher level processing is employed to deal with the 

variation of the environment and to improve the accuracy of 

segmentation.  The approach is shown to be insensitive to 

illumination change and to noise.  It also overcomes many 

common difficulties of segmentation such as foreground 

aperture, and moved background objects.  The algorithm can 

perform in real-time.   

1. Introduction 

The task of foreground segmentation is to label the regions in 

an image as moving objects or background.   It is the 

fundamental step in many vision systems including video 

surveillance, human-machine interface, and very low-bandwidth 

telecommunications. The challenges facing the segmentation task 

[11] include: illumination variation, background change, 

foreground aperture, bootstrapping, camouflage, and shadows. In 

addition, a complex algorithm may be difficult to implement for 

real time operation. 

Many approaches have been proposed to segment the 

foreground moving objects in video sequences [1]-[11]. To make 

the algorithm robust to a change in illumination or in the 

background, adaptive background modeling approaches have 

been proposed.  Kalman Filtering based methods [8] recover 

slowly to sudden lighting change and do not handle bimodal 

backgrounds well [9].  The use of Mixture of Gaussians (MoG) 

model [9] also adapts slowly to sudden lighting changes.  

Hidden Markov Model has been used to describe global state 

changes [10].  The Wallflower system [11] attempts to solve 

many of the problems with background maintenance. 

All the above approaches use the intensity or color 

information of the pixels, and are susceptible to sudden lighting 

changes.  Recently, efforts have been made to incorporate other 

illumination-robust features for scene modeling.  The intensity 

and texture information can be integrated for change detection, 

with the texture-based decision taken over a small neighborhood 

[7].  The color and gradient information can be fused and robust 

results have been reported [5].  However the computation of 

these algorithms is often too intensive for real time 

implementation.   

The temporal correlation in the video suggest modeling the 

evolution of the pixel values as a parameterized random process, 

while a block based, rather than pixel based,  modeling can take 

advantage of the spatial correlation. A  useful observation is that 

the background illumination lies mainly in the low frequency 

range, while the presence of a foreground object in a nearly fixed 

scene usually produces significant difference in both low-

frequency and high-frequency band.  Therefore a frequency 

domain approach is particularly suitable for segmenting the 

foreground from the background.  DCT coefficients were used to 

combat shadows [1], and to build competing HMM models to 

handle persistent changes [6]. 

In this paper, we propose a robust segmentation approach 

using easily computable intensity and structure features derived 

from DCT coefficients.  By using flexible adaptation of a single 

Gaussian model to environmental changes, a short or even no 

training can lead to good performance under difficult conditions, 

as demonstrated by our experimental results.  

2. The proposed method 

Each frame of the video sequence is divided into 8x8 blocks, 

and two features, ACf  and DCf , are extracted from the DCT 

coefficients and each is modeled as an independent Gaussian 

distribution with different mean µ and variance
2σ . µ and 

2σ are estimated initially from a few frames, possibly with some 

moving objects, and then are updated depending on the scene 

evolution. Segmentation of a new frame is obtained initially by 

thresholding the feature values, and then refined using size 

filtering, illumination change detection and handling, and filling.  

Based on the final segmentation of the current frame, the 

parameters µ and 
2σ are updated for the segmentation of the 

next frame.  

Block-based features incorporate local neighborhood 

information, so the algorithm using these features is less 

sensitive to noise and to small scene changes than those using 

pixel values.  This can be seen in figure 1, where the same 

modeling method works much more robust on block-based 

features than on pixel values.  The use of DCT based features 

also facilitates compressed domain processing.  
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2.1 Features 

Two features are derived from the DCT coefficients of the 

luminance component of each block: 
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feature DCf  is simply the DC coefficient, and the AC 

feature ACf  is a weighted sum of the low frequency AC 

coefficients.  The high frequency coefficients are not used 

because they are more sensitive to noise and they relate more to 

fine details that are more susceptible to small illumination 

changes.  The weight 
22 ji +  de-emphasizes the very low 

frequency components, which often correspond to smooth 

transition of intensity, e.g. shadows. So this scheme helps 

avoiding shadows being taken as part of foreground object, while 

the de-emphasized low frequency components are still able to 

help pick out foreground blocks in the case of camouflage.   

2.2 Modeling of DCf  and ACf

A key step in segmentation is the background modeling.  

Various approaches have been proposed for modeling video in 

both spatial and time domain, as well as modeling features 

derived from video.  The choice of a good model must balance 

various factors, including what quantities are to be modeled, 

computation requirement, speed of adaptation, and how it affects 

the final performance of the particular application.   For 

modeling pixel values over a few hours, the use of Mixture of 

Gaussians (MoG) has been shown to give a better fit than the use 

of a single Gaussian, even without sudden lighting change [4].  

However, we may not need to take into consideration the 

samples collected over a time period far away from the time 

instance under discussion, especially when the underlying 

random process is non-stationary, which is typically the case for 

surveillance scenario.  And we may not need to care much about 

the small amount of improvement in terms of fitting error 

brought by adding one modal in the probability distribution 

function because the presence of foreground objects almost 

always bring along significant difference from the background 

distribution.  In addition, MoG is slow to adapt to fast changing 

environment [10], and requires more computation and memory. 

In this paper, we use features DCf  and ACf of the blocks, 

instead of the pixel values.  We model each feature by a single 

non-stationary Gaussian random process. That is, with 

parameters that are varying with time.  This is described in 

subsequent sections. Extensive experiment was carried out using 

video captures under different conditions.   We have concluded 

that the use of a single non-stationary Gaussian model with a 

flexible policy allowing for fast and slow adaptation of 

parameters can accurately model the evolution of these features 

and ultimately can lead to accurate foreground segmentation 

under challenging conditions, including repetitive background 

movement.

2.3 Background model and update 

We assume DCf  and ACf  of each block follow independent 

normal distribution with means ACµ  and DCµ , and 

variance
2
ACσ and

2
DCσ , respectively. That is, 
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Initially, these parameters are estimated from a limited 

number of training frames, e.g. 20 frames, using robust 

estimators to reduce the effect of possible outliers: 
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where X stands for the set of samples of either DCf  or ACf , N

is the number of samples, med denotes the median operation and 

abs means the absolute value. 

After the segmentation of frame 1−t , the parameters of the 

background model for the next frame, frame t, are updated using 

single exponential smoothing.   
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where x denotes either DCf  or ACf , and µα and σα are

parameters controlling the learning speed. 

At the time of severe change of the environment, it is not fair 

to update the variance as in the above equations, for the 

distribution is in fact quite different from the original one (before 

change occurs), and the mean value used in the variance update 

equation may be very distinct from the real value due to the 

delay of its own adaptation.  In our current implementation, the 

new variance value is learned from a few frames as in the 

training period.  

2.4 Initial Segmentation 

Once the four parameters ACµ , DCµ ,
2
ACσ , and

2
DCσ , for all 

blocks of a frame have been determined, initial segmentation is 

performed by classifying a block as foreground, if, for that block, 

ACACAC Tf >− || µ    (*)           

or

DCDCDC Tf >− || µ    (**) 

where ACT and DCT  are the threshold values. We call those 

blocks satisfying (*) “AC foreground blocks” and those 

satisfying (**) “DC foreground blocks”, respectively.  A 

foreground object in general will have both of these blocks.   

Equation (**) is used because typically there is a large difference 

in the DC value of the intensity between a moving foreground 

block and the background block. The use of equation (*) is 

because the presence of the edge of the foreground objects and 

the different texture between the foreground and the background 

will lead to a large difference between the AC values of the 

current block and those of the background model.  The use of 

these two thresholding operations is equivalent to using both 

II - 686

➡ ➡



intensity and texture information, and will likely produce more 

robust and reliable segmentation results. 

To handle the effect of small lighting change, we use for the 

threshold a value derived from both the sample standard 

deviation and the sample mean: 

ACACACACT σµδ ×+×= 5.2

DCDCDCDCT σµδ ×+×= 5.2

where ACδ and DCδ  are parameters, whose value depends on 

how much lighting change is expected to be handled here.  It has 

been found that 25.0=δ leads to good results. 

When training is not allowed or when re-training for variance 

is taken at the time of severe environment change, i.e. when 

segmentation should be done without an estimate of the variance, 

we simple raiseδ by a factor of 2.  

2.5 Learning parameters 

There is a tradeoff between stability and adaptation speed when 

choosing a learning parameter.  When the scene is slowly 

varying, a smallα is preferred as it avoids the impact of outliers.  

When there is a change of either the camera or the environment, 

a large α is preferred in order to quickly arrive at a new 

background model.  For the parameter µα that controls mean 

value adaptation, we set a range ],[ maxmin αα for it and use the 

scheme as   
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where n is frame number starting from when fast update is 

needed, such as global or local lighting change or moved 

background objects.  We identify a global lighting change if a 

large portion of the scene is classified as foreground in the initial 

segmentation result.  We identify local lighting change and 

moved background objects by the persistence of certain groups 

of 8-connected neighboring blocks classified as foreground. 

For the parameter σα  that controls variance update, as 

mentioned previously, it does not take effect when fast update is 

applied to µα .

2.6 Size Filtering 

After the initial segmentation, all blocks of the frame are labeled 

1 (foreground) or 0 (background).  To remove false positives, 

size filtering is applied to each separate blob.  Specifically, a 

blob is removed if: a) its size is smaller than a given value, or b) 

the ratio of the number of AC blocks to that of DC blocks is less 

than a given value, or c) the ratio is greater than a certain value.  

This is not only very effective to remove sporadic false alarms as 

the usual size filtering scheme does, but also effective in 

combating local lighting change and repetitive movement, 

because local lighting change will usually only result in DC 

blocks, while repetitive movement will only result in AC blocks. 

Filling can be applied to remove some false negatives, since 

most interesting objects are compact. 

3. Experimental results

We tested our method using sequences representing the typical 

challenges in foreground segmentation. The four videos are 

available at:  

http://www.princeton.edu/~juhuazhu/Acad/Demo.htm.

The first sequence features a highly reflective wall in the 

background.  The mirror like background shows a considerable 

number of moving shadows from objects far away from the wall.  

In addition, the background contains a large area looking very 

much like the skin-tone in intensity images.  There is a walking 

person wearing trousers with similar color as that of the 

background.   Our method results in very few false negatives and 

almost no false positives.  Two sample frames are shown in Fig. 

1.  By comparison, the result of the same frames by using a 

single Gaussian model for each pixel value is shown in the left 

column.  Due to the very short time duration for both training 

and segmentation, and the very little lighting change, it does not 

make much sense to use multiple modals.  As can be seen from 

the result, modeling single pixel value fails shortly.  If the 

thresholds are raised higher, there will be more false negatives; if 

they are lower, a lot of false positives.  While the simultaneous 

modeling of block-based features leads to satisfactory result, 

with all the parameters kept unchanged, without any adaptation. 

The second sequence includes severe and frequent global and 

local illumination changes, very strong lighting at some 

locations, some mirror-like background parts, and some cluttered 

background regions.  This is a very difficult environment for 

foreground segmentation.  But our approach produces good 

segmentation.  Sample frames are shown in Fig. 2. 

The third sequence contains cluttered background of trees, 

swaying branches, and a person wearing clothes with the color 

similar to the background.  The swaying branches are detected 

only when the person shakes the branches violently.  But it 

recovers almost immediately when the shaking stops. 

The fourth sequence contains a moving car and a walking 

person in an outdoor setting.  Object sizes vary considerably and 

the car blocked the person briefly.  Our segmentation results 

show no foreground aperture problem typically present for 

homogeneously colored cars, and the recovery after occlusion is 

fast. 

In our tests, the number of false positives and false negatives 

are low. Although some false alarms appear due to a sudden 

lighting change, they do not persist as our system quickly adapts.  

Our present C++ code, without optimization, can handle 36 

frames per second for a frame size of 352x240 pixels on a PIII 

900M HZ machine.  It appears that our method can handle well 

most of the difficulties of real-time foreground segmentation. 

4. Summary

This paper presents a novel approach for foreground 

segmentation for video sequences.  It uses two features derived 

from the DCT of each 8x8 block. A single Gaussian distribution 

is used to model the evolution of the two features in each block.  

An updating process is designed to handle effectively the 

changing background.  The judicious choice of features makes 

our method insensitive to noise and light shadows. The method 

is also able to successfully handle the problems of gradual and 

sudden illumination changes, global and local illumination 
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changes, moved background objects, small repetitive background 

movement, and foreground aperture.   
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frame 31 

frame 35 

Fig. 1. Left column is the result of using only intensity of single 

pixels. It fails shortly.  The right column is the result of proposed 

method. It is very robust.  First 25 frames are used for 

background training. 

frame 29    frame 49 

frame 97    frame 163 

frame 164  frame 201 

Fig. 2. Segmentation result of proposed method.  Severe lighting 

changes at frames 49, 163, and 164. First 20 frames are used for 

background training. 
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