
REDUCED SUPPORT VECTOR MACHINES APPLIED TO REAL-TIME FACE TRACKING

Benjamin Castañeda

Department of Computer Engineering
Rochester Institute of Technology

Rochester, NY
bcastane@ieee.org

Juan C. Cockburn

Department of Computer Engineering
Rochester Institute of Technology

Rochester, NY
jcck@ieee.org

ABSTRACT

This paper presents the implementation of a real-time face tracker
to study the integration of Support Vector Machines (SVM) classi-
fiers into a visual real-time tracking architecture. Face tracking has
a large number of applications, especially in the fields of surveil-
lance and human-computer interaction, which requires real-time
performance. Even though SVM have previously been applied to
face detection, their use in real-time applications is a challenge due
to the computational cost implied in the SVM’s evaluation stage.
We address this problem by reducing the number of support vec-
tors with almost no loss in accuracy of the classifier. Experiments
showed that classification performed by the original SVM with-
out reducing the number of support vectors took 42% of the total
computation time of the face tracker and less than 2% after the
reduction was performed.

1. INTRODUCTION

Human-Computer Interaction has received lately renewed interest
due to advances in technology. Applications, which could have
been considered fiction a decade ago, are now possible due to
smaller, cheaper and more powerful computing devices. For exam-
ple, smart rooms could have smart cameras in charge of tracking
the user so his/her gestures and movements are evaluated as input
commands. It is apparent that visual tracking should be a funda-
mental capability of the system, and since the interaction between
the room and the user is required, this should be accomplished in
real-time.

A common approach to tracking an object in a video stream
is to use an object detector, a classifier and a motion estimator
or tracker in sequential order. The object detector scans a frame
from the video stream and selects the candidates to be analyzed by
the classifier. The classifier evaluates every candidate assigning it
a measure that indicates the likeliness of the candidate to be the
object searched. The candidate with the best score is then locked
and the tracker is used to follow it through the field of view. This
standard tracking architecture has been successfully implemented
in a variety of applications [1, 2].

The classifier plays an important role in the overall perfor-
mance of the tracking system. In recent years, Support Vector Ma-
chines (SVM) have been a breakthrough in the machine learning
community. They have been proved effective in a variety of tasks
related to classification such as Character Recognition, Image Ro-
tation Detection, Gesture Recognition, Face Recognition, Bioin-
formatics, and Spam Classification. However their use has been

hampered by the complexity and computational time involved in
the test (classification) stage.

The goal of this work is to analyze the integration of a SVM
classifier into a visual real-time tracking architecture. For this pur-
pose, a face-tracking system based on SVM is implemented. The
computational time of the SVM test phase is improved by reduc-
ing the number of support vectors. Face tracking was selected
among different applications because it represents a prototype vi-
sual tracking problem. A practical face tracking application should
detect and track faces on complex backgrounds, be insensitive to
head orientation, scale changes, illumination changes, partial oc-
clusions and shadows [3], plus the additional real-time constraint.
Since the objective of this work is focused on the use of SVMs
as classifiers in a tracking architecture, the problem was limited to
tracking faces of people looking into the camera at a known fixed
distance from the camera, without occlusion and with controlled
illumination.

The paper is divided as follows: Section 2 describes the ar-
chitecture implemented for the face-tracking system. Section 3
presents the details on the SVM classifier used and the method to
reduce the number of support vectors. Section 4 shows the exper-
imental results of the time performance of the face-tracking archi-
tecture. Finally, Section 5 closes the paper with conclusions.

2. VISUAL TRACKING ARCHITECTURE

The face-tracking system is based on the architecture reported in
[4]. The architecture consists of several tracking modules, one per
each feature, and a Data Fusion Stage (see Figure 1). Each of the
modules can be configured independently in order to take advan-
tage of the characteristics of a specific feature. The data fusion al-
gorithm exploits the relationships among different features to im-
prove the overall (face) detection, tracking and reacquisition. A
visual tracking module is composed of pre-processing, classifica-
tion and motion estimation stages, and has two operational modes:
Detection and Tracking. In detection mode, the pre-processing
and classifier combination is used to obtain an initial position of
the feature of interest with high confidence. Then the module is
switched to tracking mode, where a motion estimator is used to
track the feature detected by the classifier. Both modes of op-
eration give as a result a list of vectors (fi, si,xi) containing a
candidate identifier (fi), a score indicating the likelihood of the
candidate to be the actual feature (si) and its position (xi).

The data fusion stage combines temporal and spatial infor-
mation from different modules to determine the position of the
tracked features and to decide whether the detection mode or the

II - 6730-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

 4

Mode

Data
Fusion

Object
Position

Pre -
Processing

Pre -
Processing

Feature
Classifier

Motion
Estimator

mux Module 1

 2
 3

Frame 1

.
.
.

.
.
.

{Video
Stream

Fig. 1. Feature Based Tracking Architecture

tracking mode of each module should be used. The current and
previous data from the list of vectors given by the modules is used
to restrict the number of candidates to be classified, and to weight
the candidates in order to have the most accurate classification and
to choose the mode of operation (detection or tracking). Once the
final position of the individual features has been determined, they
are used to update the motion estimators from the different mod-
ules.

2.1. Face Tracking Implementation

The pre-processing stage consists of two steps. The first step uses
a combination of skin color segmentation [5], density maps [6] and
geometric filtering to extract face candidate regions from a frame.
The second step extracts facial features candidates from each face
candidate region. The facial feature candidates are obtained by
using a combination of skin color information and the fact that
facial features are of lower intensity than the rest of the face [2].
More details of the pre-processing stage can be found in [4].

A Kalman Filter was designed for motion estimation and com-
bined with a template matching technique. For each feature, two
Kalman Filters were used, one per coordinate axis. For example,
each eye has its own pair of filters. The parameter selection for the
Kalman Filter was based on the guidelines presented in [7]. The
data fusion stage was designed on biometric heuristics based on the
geometric relationships between eyes and lips. The focus of this
work is on using SVM classifiers as feature detectors. In this par-
ticular case, the features are eyes and lips. Therefore, two SVMs
were designed: one to recognize eyes, and another to recognize
lips. In Figure 2, an example of eyes and lip detection is shown.
The face region is highlighted by a bounding box and the features
by rectangular boxes.

3. SVM CLASSIFIERS

SVM are used for eye and lip detection. SVM have been applied
successfully in face detection [8, 1] and facial feature extraction
[9]. The design of SVM essentially involves choosing a Kernel and
designing a training set and a test set. Since the classifier needed
to distinguish among facial features, we created a Facial Feature

Fig. 2. Example of eyes and lip classification

Data set (FFDS). It consisted of 10 × 20 pixel images grouped
in five classes: eyes, lips, eyebrows, nostrils and hair. Two pro-
grams were written to perform this task. The first one followed
the algorithm described in the pre-processing stage to obtain facial
feature candidates. For each facial feature candidate, a 10x20 im-
age was extracted and classified by a human operator. The second
program was designed to guarantee the integrity of the data sets;
the already classified features grouped by class were shown to an
operator who verifies the classification. 13 subjects from differ-
ent ethnicity went through this process, in which they were asked
to move while looking at a video camera. Only small movements
such as yaw, roll and pitch of ±5 degrees were allowed. The FFDS
was then divided in a training set consisting of 15, 308 images and
a test set with 5, 347 images.

Two classifiers, one for eyes and one for lips, were trained
using the Matlab toolbox [10] based on Platt’s SMO Algorithm.
To choose the machine kernel and the cost of misclassification
parameter (C), experiments were performed with linear, polyno-
mial and radial basis function kernels using a smaller training set
(5, 000 samples) and varying C from 0.01 to 100. From an exper-
imental performance and computational complexity study a poly-
nomial kernel of second degree and C = 0.01 were selected. The
training process gave as a result 2415 support vectors for eyes and
2261 for lips.

3.1. Reduced Support Vectors

Reducing the number of support vectors is an approximation prob-
lem that can be posed as a minimization problem as follows: The
decision boundary of the original SVM is defined implicitly by:

Ψ =

Ns�

i=1

wiΦ(xi) (1)

where Ψ ∈ F is characterized by the support vectors xi ∈ X ,
wi ∈ R and Φ(x) ∈ F is the non-linear mapping implicitly de-
fined by the kernel of choice.

Similarly, an approximation to that decision boundary can be
written as:

Ψ′ =

Nz�

i=1

βiΦ(zi) (2)

with Nz � Ns, βi ∈ R, and the reduced set of vectors zi ∈ X .

Then, the reduced support vector problem can be posed as:

min
Ψ′ ‖Ψ − Ψ′‖2

(3)

II - 674

➡ ➡

where ‖ · ‖ denotes the Euclidian Norm.

To accomplish this task, we followed the work presented in
[11] and extended it to be applicable to polynomial kernels. First,
we consider the case approximating Ψ with one vector z. Then (3)
will transform into:

min
z

‖ (Ψ · Φ(z))

Φ(z) · Φ(z)
Φ(z) − Ψ‖

2

= min
z

‖Ψ‖2 − (Ψ · Φ(z))2

(Φ(z) · Φ(z))
(4)

which is equivalent to:

max
z

(Ψ · Φ(z))2

(Φ(z) · Φ(z))
(5)

For the case of polynomial kernels, the following iterative equation
was deduced to find z:

z =
(zT z + d)(

�Ns
i=1 wi(x

T
i z + d)p−1xi)

(
�Ns

i=1 wi(xT
i z + d)p)

zn+1 =
(zT

n zn + d)(
�Ns

i=1 wi(x
T
i zn + d)p−1xi)

(
�Ns

i=1 wi(xT
i zn + d)p)

(6)

Once z is found through (5), the associated weight β is computed
by:

β =
(Ψ · Φ(z))

(Φ(z) · Φ(z))
(7)

In order to calculate higher order reduced set vectors zm, m > 1,
Ψm is introduced as the decision boundary to minimize in every
iteration of the algorithm. For the first one, Ψm is initialized as
the original decision boundary Ψ. In the next iterations, Ψm is
computed as:

Ψm = Ψ −
m−1�

i=1

βiΦ(zi)

Ψm =

Ns�

i=1

wiΦ(xi) −
m−1�

i=1

βiΦ(zi)

Ψm =

Nx�

i=1

ωiΦ(χi) (8)

where m is the iteration number, Nx = Ns+m−1, (ω1, . . . , ωNx) =
(w1, . . . , wNs ,−β1, . . . ,−βm−1), and (χ1, . . . , χNx) = (x1, . . . , xNs , z1, . . . , zm−1).

The procedure will end when ‖Ψ − Ψ′‖2 is less than a pre-
defined tolerance ρ, or m = Nz .

4. RESULTS

Three people were asked to participate in the experiments with
the face tracking application. Five videos per person were timed
and analyzed. Each of the videos lasted approximately 2 minutes
yielding information for 50000 frames. Table 1 shows the max-

#SV Min(ms) Max(ms) Avg(ms) Avg Time/point(ms)
Eyes 2415 45.58 167.00 102.28 1.21
Lips 2261 34.09 197.74 72.73 1.13

Table 1. SVM Classification Time

imum, minimum and average time in milliseconds to perform a
classification with the support vectors resulting from the SMO

training. The average time to classify a single feature candidate
is also presented. Both classifiers, for eyes and for lips, need more
than one millisecond per candidate. Their average classification
time in both cases exceeds 33.3 milliseconds, which means these
classifiers would not be able to achieve real-time performance by
themselves. Table 2 summarizes the time performance of the sup-

#SV Avg(ms) Avg fr on track
Eyes 2415 7.54 26.76
Lips 2261 6.46 26.98

Table 2. SVM and Kalman Filters Tracking Time

port vector machines classifiers in combination with Kalman filters
and template matching. The classifier is used to detect the initial
position of the feature. This initial step may introduce a noticeable
delay in the video stream, which is then recovered in the subse-
quent frames where template matching is used. The average time
per frame for this latter step is 4.1 milliseconds. Therefore, the av-
erage process time per frame is reduced to less than 8 milliseconds
in both features.

The feature-based architecture includes a latter step of data fu-
sion, which basically combines the information of all the features
to improve reacquisition when the track of one of them is lost.
This final stage helps to reduce the number of candidate features
to be evaluated when reacquiring one feature, improving time per-
formance. Figure 3 presents the average distribution of the com-
putation in the feature-based architecture based on the two-minute
videos. Even though, support vector machines are used on aver-

Tracking application: Distribution of Computation using Support Vectors

11.45%

42.18%

0.01%

46.36%

Pre-Processing SVMs Data fusion Correlation

Fig. 3. Distribution of Computation

age once every 20 frames, the complexity of evaluating them takes
42% of the computation time. The computational time spent in
the motion estimation step is similar (46%), however the motion
estimator subroutine is called 20 times more often than the support
vector machines and its computation is divided among 20 frames
in average while support vector machines concentrate in only one
frame. The pre-processing stage and the data fusion stages com-
bined take 12% of the computation. Reducing the computational
time spent in SVM classification would clearly improve the overall
time performance of the tracking architecture.

After applying the support vector reduction, results show that
with far less number of vectors, the accuracy in test and training
sets are similar to the accuracy of the original SVM (see Table 3
below).

II - 675

➡ ➡

SV Accuracy Training Set Accuracy Test Set
Eyes 2415 98.8 91.1
Lips 2261 98.7 91.1
Eyes 40 98.7 90.4
Lips 37 98.3 89.5

Table 3. Results of reducing the number of Support Vectors

Table 4 shows the improvement in time performance when
the reduced support vectors are used. These results even suggest
that SVM classifiers could be used in every frame and real time
performance could still be achieved. Table 5 shows the results of
integrating the classifiers with Kalman filters and template match-
ing. The average time per feature is now less than 4 milliseconds.
Comparing with the results showed in Table 2, the average time
per frame has been lowered by half in each feature. With the

#SV Min(ms) Max(ms) Avg(ms) Avg Time/point(ms)
Eyes 40 0.9139 3.3485 2.0509 0.0242
Lips 37 0.6850 3.9729 1.4613 0.0228

Table 4. Reduced Support Vectors Classification Time

#SV Avg(ms) Avg fr on track
Eyes 40 3.9241 24.6875
Lips 37 3.8981 23.9143

Table 5. RSV and Kalman Filters

introduction of the reduced support vectors into the feature-based
architecture, the distribution of the computation changes signifi-
cantly (see Figure 4). The computational time spent in the classi-
fiers is reduced from 42% to 1.4%.

Tracking Application: Distribution of Computation using Reduced Support Vectors

21.34%

77.19%

1.44%

0.03%

Pre-Processing SVMs Data fusion Correlation

Fig. 4. Distribution of Computation using Reduced Support Vec-
tors

5. CONCLUSION

The face tracking application implemented in this work represents
a prototype of the use of Support Vector Machines as classifiers
in tracking applications. It also illustrates the impact of reducing
the number of support vectors in the overall time performance of
the tracking system. This application clearly shows that the use of
Support Vector Machines in tracking applications is feasible and
that it can be done in real-time. In this particular application, the

classification performed by the original SVM without reducing the
number of support vectors took 42% of the total computation in the
tracking architecture. This percentage was lowered to less than 2%
by reducing the number of support vectors involved in the classi-
fication process. The number of support vectors was reduced by
98% of the original one. Due to the reduction in the computational
cost of the classifier, the detection and tracking of the three features
(2 eyes and the lips) can be performed at every frame. Reducing
the computational cost of SVM classification gives additional time
for other tasks. This is critical if an application runs in real-time.
This additional time can be allocated to the pre-processing, motion
estimation or data fusion stages.

6. REFERENCES

[1] V. Kumar and T. Poggio, “Learning-based approach to re-
altime tracking analysis of faces,” Technical Report 1672 -
MIT, 1998.

[2] J. Sobottka and I. Pittas, “Segmentation and tracking of
faces in color images,” in Proceedings of the Second Inter-
national Conference on Automatic Face and Gesture Recog-
nition, 1996, pp. 236–241.

[3] M. Porta, “Vision-based user interfaces: methods and appli-
cations,” Int. Journal on Human-Computer Studies, vol. 57,
pp. 27–73, 2002.

[4] B. Casta neda, Y. Luzanov, and J.C. Cockburn, “A modular
architecture for real-time feature-based tracking,” in Proc.
2004 IEEE International Conference on Acoustics, Speech,
and Signal Processing, Montreal, Quebec, Canada, May
2004.

[5] E. Saber and A. M. Tekalp, “Frontal-view face detection
and facial feature extraction using color, shape and symmetry
based cost-functions,” Pattern Recognition Letter, , no. 19,
pp. 669–680, 1998.

[6] V. Kravtchenko, “Tracking color objects in real time,” M.S.
thesis, The University of British Columbia, 1999.

[7] M.R.J. Kohler, “System architecture and techniques for
gesture recognition in unconstraint environments,” in In-
ternational Conference on Virtual Systems and Multimedia,
Switzerland, 1997.

[8] S. Romdhani, B. Schölkopf P. Torr, and A. Blake, “Com-
putationally efficient face detection,” in 8th International
Conference on Computer Vision, 2001, vol. 2, pp. 695–700.

[9] B. Heisele, P. Ho, J. Wu, and T. Poggio, “Face recognition:
component-based versus global approaches,” Computer Vi-
sion and Image Understanding, vol. 91, pp. 6–21, 2003.

[10] G. C. Cawley, “MATLAB support vector machine toolbox
(v0.50β) [http://theoval.sys.uea.ac.uk/˜gcc/svm/toolbox],”
University of East Anglia, School of Information Systems,
Norwich, Norfolk, U.K. NR4 7TJ, 2000.

[11] B. Schölkopf, S. Mika, C.J.C. Burges, P. Knirsch, K-R.
Müller, G. Rätsch, and A.J. Smola, “Input space vs. fea-
ture space in kernel-based methods,” in IEEE Transactions
on Neural Networks, 1999.

II - 676

➡ ➠

