
DENOISING OF IMAGES USING DESIGNED SIGNAL DEPENDENT FRAMES AND
MATCHING PURSUIT

Kjersti Engan, Karl Skretting and John Håkon Husøy
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ABSTRACT

The use of frames, or overcomplete dictionaries, for sparse sig-
nal representation has been given considerable attention in recent
years. The major challenges are good algorithms for sparse ap-
proximations, and good methods for choosing or designing frames.
We are concerned with the latter, and have developed algorithms
for training frames for a class of data and a specific application.
The application presented in this paper is denoising of images with
additive Gaussian noise. We present a method for training of con-
strained overlapping frames to be used for denoising of images.
Experiments show that the proposed method improves denoising
results compared to adaptive Wiener filtering and wavelet denois-
ing.

1. INTRODUCTION

Signal expansions using frames, or overcomplete dictionaries, can
be regarded as generalizations of signal expansions based on trans-
forms, filter banks, and wavelets. The use of transforms, filter
banks, or wavelets to represent a signal corresponds to expressing
signal vectors as linear combinations of basis vectors. Forming
the hypothesis that the representation capabilities of sparse linear
combinations will increase with the addition of more vectors than
what is needed to form a basis, leads to the exploration of frames
or overcomplete dictionaries.

In many application we are interested in a sparse approxima-
tion of a signal rather than an exact representation. The recon-
structed N -dimensional signal vector (often an approximation of
x) can be written as:

x̃ = Fw =
K∑

i=1

wifi, (1)

where K > N , i.e. the number of dictionary vectors is larger
than the dimension, thus the vectors fj are not linearly indepen-
dent. Finding the best sparse approximation is NP-hard [1], and
suboptimal vector selection algorithms are used. We use Order
Recursive Matching Pursuit (ORMP) throughout this work [2].

Whenever an image is converted from one form to another,
e.g., copied, scanned, digitized, transmitted, printed, or compressed,
many types of noise or degradations can be present in the im-
age. Hence, an important subject is the development of image en-
hancement algorithms that remove (smooth) noise artifacts while
retaining image structure. Classical image denoising techniques
are based on filtering and tend to blur the image [3].

Adaptive Wiener filtering is a classical denoising technique
and is used as a reference system in this work. More recently
wavelet-based denoising techniques have been recognized as pow-
erful tools for denoising. Donoho and Johnstone [3, 4] introduced
the use of wavelets in denoising, and their method is also a ref-
erence system used in this work. In the Donoho and Johnstone
method a Discrete Wavelet Transform (DWT) is performed on the
noisy image, the scaling coefficients are left unchanged, while the
wavelet coefficients are thresholded to remove the noise. For addi-
tive Gaussian noise the thresholding is usually done as soft thresh-
olding. In this paper we propose thresholding already sparse frame
coefficients, wi of Eq. 1, using custom designed frames.

2. TRAINING OF OVERCOMPLETE
DICTIONARIES/FRAMES

Design of frames to use for specific applications or datasets has
been given some, but relatively modest, attention [5, 6, 7, 8], and
frames are often chosen rather than optimized.

We have developed frame design algorithms inspired by the
Generalized Lloyd Algorithm (GLA) for vector quantization code-
book design to be able to train a frame to perform well for a class
of data and for specific applications. The original algorithm was
constructed for unconstrained block oriented frames [7] and was
later extended to overlapping frames, with and without different
kinds of constraint like predefined structure and symmetries[9].

Unconstrained overlapping frames can become unpractical for
signals with more than one dimension. We impose constraint on
the overlapping frames to make them more tractable for signals of
more than one dimension. A brief overview of the design algo-
rithm is given in the following. More details can be found in [9].

For a one dimensional signal and the block-oriented case the
synthesis equation for a collection of signal blocks can be stated
as x̃ = F w or equivalently

⎡
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...

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2)

In the following, let X̃ = [x̃1x̃2 . . . x̃L], W = [w1w2 . . .wL],
and the training data X = [x1x2 . . .xL]. The optimal frame will
depend on the target sparseness factor and the class of signals we
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want to represent. We want to find the frame, F, of size N ×
K where K > N , and the sparse coefficient vectors, wl, that
minimize the sum of the squared errors. The objective function to
be minimized is

J = J(F,W) = ‖X − X̃‖2 = ‖X − FW‖2. (3)

Finding the optimal solution to this problem is difficult if not im-
possible. We split the problem into two parts to make it more
tractable. The iterative solution strategy presented below results in
good, but in general suboptimal, solutions to the problem.

The algorithm starts with a user supplied initial frame F(0)

and then improves it by iteratively repeating two main steps:

1. W(i) is found by vector selection using frame F(i), where
the objective function is J(W) = ‖X − F(i)W‖2 and a
sparseness constraint is imposed on W.

2. F(i+1) is found from X and W(i), where the objective
function is J(F) = ‖X − FW(i)‖2. This gives:

F(i+1) = X(W(i))T (
W(i)(W(i))T )−1

(4)

Then we increment i and go to step 1.

i is the iteration number. The first step is suboptimal due to the
use of practical vector selection algorithms, while the second step
finds the F that minimizes the objective function.

When we extend our design strategy to the general overlapping
case, the large frame, F , can be written as

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . F1

. . .
... F1

. . . FP

... F1

. . .

FP

...
. . .

FP

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, F =

⎡
⎢⎣

F1

...
FP

⎤
⎥⎦ .

(5)

The synthesis vectors are the columns of F or F. F (of size NP ×
K) can be partitioned into P submatrices, {Fp}P

p=1 each of size
N × K.

In [9, 10] F was set to be the product of two matrices, F =
GH, corresponding to
⎡
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with G as the large matrix with G, of size NP×N , along the diag-
onal. H denotes the large matrix with H, of size N ×K, along the
diagonal. The structure of the first matrix, G, corresponds to the
synthesis matrix of a critically sampled FIR synthesis filter bank.
The constituent matrices of F , the F matrices, are each of size
NP × K and defined by

F = GH =

⎡
⎢⎣

G1

...
GP

⎤
⎥⎦ H =

⎡
⎢⎣

G1H
...

GP H

⎤
⎥⎦ . (7)

The signal representation is now x̃ = F w = GHw.
The task of designing F can now be divided into two parts:

Selecting a reasonable G, which we then keep fixed, and finding
an H (or equivalently its constituent matrices H) using the method
described for block oriented frames. By fixing G a restriction is im-
posed on F , the synthesis vectors of F may not be freely selected
vectors from RPN , but are restricted to be in the N dimensional
subspace of RPN spanned by the N columns of G. The objective
function will now be

J = J(H) = ‖x − GHw‖. (8)

Suppose that the columns of G’s constituent matrices, G, are
chosen as the synthesis vectors (filter responses) of an orthogonal
perfect reconstruction filter bank, then G−1 = GT and the norm is
conserved, ‖x‖ = ‖Gx‖ = ‖G−1x‖. This implies that

J = ‖x− GHw‖ = ‖G−1(x− GHw)‖ = ‖GT x−Hw‖, (9)

and we can design H in exactly the same manner as we design
a block-based frame. The only difference is that we use (GT x)
rather than x as the training signal. That is, we do the approxima-
tion in the coefficient domain rather than in the signal domain.

This technique can be generalized to two dimensions [10]. G
is chosen as the synthesis vectors of an orthogonal perfect recon-
struction filter bank. Examples can be Lapped Orthogonal Trans-
form (LOT) [11] and Extended Lapped Orthogonal Transform
(ELT), and different Discrete Wavelet Transforms (DWT). Find-
ing the representation coefficients, w, is a two step process. First
the analysis corresponding to the synthesis, G, is performed sepa-
rably, and we obtain the analysis-coefficients (GT x)2D . The sec-
ond step is to find a sparse approximation of these coefficients us-
ing the block oriented frame H, and this is done non-separably.
Therefore the analysis-coefficients, (GT x)2D , are rearranged into
vectors before being represented by a sparse approximation, w,
using the frame H. Experimentally we found it beneficial to let
one coefficient from each frequency band be arranged lexiograph-
ically into a vector when G is chosen to be a lapped transform,
LOT/ELT. When G is chosen to be a 3-level DWT the coefficients
are arranged into vectors according to a wavelet tree, i.e. each
vector consists of one coefficients from each of the 3-level decom-
positions, four from the three 2-level decompositions and 16 from
the three 1-level decompositions. H can be designed and used in
the coefficient domain by using the block-based frame design al-
gorithm presented in the beginning of this section.

3. DENOISING USING OVERLAPPING FRAMES

Since DWT has proven to be successful in denoising of images [3],
and since overlapping frames can be regarded as a generalization
of DWT or filter banks, it was natural to try denoising of images
using overlapping frames. The main idea of denoising by using
an efficient signal representation, including both DWT and over-
lapping frames, is that hopefully the noise space is quite different
from the signal space. By trying to efficiently represent the signal
space, the parts that are left out are mainly noise.

Using DWT and soft thresholding, many of the small wavelet
coefficients are set to zero, thus we get a sparse representation of
the image. Soft thresholding also lowers the value of the wavelet
coefficients that are kept to reduce the noise influence in the signal
space.
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Method PSNR [dB] - Lena
σ2 = 100 σ2 = 400 σ2 = 900

Wiener
3 × 3 32.7 28.7 25.5
5 × 5 31.7 29.3 27.3

Wavelet T=15 T=30 T=60
DWT db4 32.0 28.8 26.9
DWT db8 32.0 28.8 26.9
DWT coif5 32.2 28.9 27.1

Frame T=15 T=30 T=60
MSElim: 80 170 240
G=ELT 31.8 28.9 26.9
G=db4 32.1 29.3 27.5
G=db8 32.1 29.2 27.3
G=coif5 32.2 29.3 27.5

Table 1. Denoising of Lena images with different σ2. T is soft
thresholding level. MSElim is local quality criterion for each block
of coefficients, deciding local sparsity.

There are two factors involved in the denoising using overlap-
ping frames. First we find a sparse approximation of the image,
and the degree of sparseness must be chosen. One possibility used
in [12] is to decide how many coefficients to be nonzero in the rep-
resentation of the entire image. Sparsity can also be imposed by
deciding for a quality criterion (Mean Squared Error (MSE)) for
the representation of a signal segment. Frame vectors are selected
until the quality criterion is satisfied, letting the local sparseness
be decided from the quality criterion. The latter performs some-
what better and is used in this work. A considerable part of the
noise should be removed just by finding this efficient sparse repre-
sentation of the image. The other factor is soft thresholding of the
nonzero coefficients. This can put some of the chosen non-zero co-
efficients to zero, resulting in an even more sparse representation,
but mostly it means reducing the value of the coefficients.

4. EXPERIMENTS

Experiments were done on images with additive Gaussian noise
with σ2 =100, 400, and 900. The frames used in these experi-
ments were trained on a training set of 8 natural graylevel images
with 8 bit per pixel (bpp), and they were tested on images outside
the training set. In all experiments H was trained using the same
choices for G as was done for testing.

Table 1 shows PSNR results for the best experiments on the
test image Lena with the different denoising methods, and Table 2
shows PSNR values for denoising on two different images both
with σ2 =400. In denoising applications the visual results are
more important than the PSNR values, so Figure 1 and 2 depicts
details from the denoising experiments on Lena with σ2 = 100
and σ2 = 400, respectively. In figure 3 parts of the image Julie,
from the denoising experiments with σ2 = 400 are shown. The
visual test as well as the PSNR test shows that the frame method,
especially selecting G as a wavelet, performs better than the pure
wavelet method. Wiener filtering with 3 × 3 mask performs best
in terms of PSNR but a lot of the noise is still left in the image.
Wiener filtering with 5 × 5 mask over-smooths the image, and
edges and details are preserved considerably better using frames
or DWT.

Method PSNR [dB] - σ2 = 400
Boat Julie

Wiener
3 × 3 28.38 26.25
5 × 5 28.33 25.14

Wavelet T=30 T=30
DWT db4 28.04 25.41
DWT db8 28.00 25.26
DWT coif5 28.13 25.45

Frame T=30 T=30
MSElim=170
G=ELT 28.28 25.10
G=db4 28.51 25.34
G=db8 28.35 25.18
G=coif5 28.52 25.39

Table 2. Best results form the different methods on noisy images
with σ2 = 400. T is soft thresholding level. MSElim is local qual-
ity criterion for each block of coefficients, deciding local sparsity.

Fig. 1. Details from image Lena. Top line from the left; original
and noise added (σ2 = 100). Second line; Wiener with 5 × 5
mask and DWT coiflet5. Last line; frame with G=db4 and frame
with G=coiflet5.
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Fig. 2. Details from image Lena. Top line from the left; original
and noise added (σ2 = 400). Second line; Wiener with 5 × 5
mask and DWT coiflet5. Last line; frame with G=db4 and frame
with G=coiflet5.

5. SUMMARY AND CONCLUSIONS

We have developed algorithms for designing signal dependent frames
for various applications. A version of the algorithm including con-
straint to make it computationally attractive for two-dimensional
signals is presented, and its usefulness for image denoising is demon-
strated. The denoising experiments show that our overlapping
frames have a good potential in this important application. Sharp
edges and textures are preserved better than using adaptive Wiener
filtering or DWT with soft thresholding. Unfortunately some arti-
facts are added in the smooth regions with both DWT and overlap-
ping frames. How to reduce such undesired effects is a topic for
further investigations.
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