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ABSTRACT 

Image denoising is a well-known problem in signal 
processing. Wavelet decomposition based approaches 
have been applied successfully to the image denoising 
problem. The majority of the wavelet thresholding 
methods do not take the spatial correlation between the 
wavelet coefficients into account. In this paper, a new 
image denoising approach that incorporates the intra-scale 
dependencies between the wavelet coefficients into the 
thresholding algorithm is presented. The co-occurrence 
matrix of the wavelet coefficients and their neighbors is 
constructed to represent the spatial dependencies. An 
information-theoretic criterion, the 2-D joint entropy of 
the wavelet co-occurrence matrix, is used as the cost 
function to determine the optimal threshold. Experimental 
results indicate that the proposed approach yields 
significant improvement over the universal thresholding 
both in visual quality and mean square error. 

1. INTRODUCTION 

Image denoising is an important and fundamental task in 
many image processing applications. Over the past decade, 
wavelet transform has been applied successfully to the 
image denoising problem thanks to its energy compaction 
property. In particular, wavelet-based thresholding 
algorithms and their extensions (e.g., [1,2]) have been 
proposed and developed. All of these methods rely on 
thresholding the wavelet coefficients to minimize a given 
cost function in order to obtain improved visual quality.  

It has been shown that the wavelet coefficients are 
highly correlated with each other [3-6]. This correlation, 
mainly caused by features such as lines, edges, and corners, 
arises between neighboring coefficients in a given subband 
as well as between coefficients corresponding to different 
scales and orientations. Although some work [7] has been 
done to include the inter- and intra-scale dependencies 
between the wavelet coefficients, in most wavelet 
thresholding methods the selection of the threshold does 
not take the spatial correlation between the wavelet 

coefficients into account. In [5], it is shown that intra-scale 
models capture most of the dependencies between the 
wavelet coefficients, and the gains obtained by including 
the inter-scale dependencies are marginal. In addition, 
taking inter-scale relationship between the wavelet 
coefficients into account increases the computational 
complexity. 

In this paper, we focus on the intra-scale 
dependencies between the wavelet coefficients in the 
denoising algorithm. The two-dimensional joint 
probability density function known as the co-occurrence 
matrix [8] is used to represent the spatial correlation 
between the wavelet coefficients. The co-occurrence 
matrix is widely used in texture and image classification 
and segmentation [9,10]. An information-theoretic 
criterion, joint entropy, is used as the cost function. The 
threshold value is determined by applying the maximum 
entropy sum principle on the wavelet co-occurrence matrix. 

Section 2 introduces the background on wavelet 
thresholding. Section 3 describes the proposed image 
denoising approach. Experimental results are summarized 
in Section 4. Finally, Section 5 gives concluding remarks 
and suggests some future work. 

2. WAVELET THRESHOLDING AND COST 
FUNCTION SELECTION 

Consider a denoising problem for a N x N  image 
X corrupted by additive white Gaussian noise εεεε  yielding 

a noisy image Y
                                        εεεε++++==== XY .                              (1) 
The noise samples ijε are independent and identically 

distributed (iid) Gaussian with zero mean and variance 2
nσ .

A 2-D discrete wavelet transform is used to decompose the 
noisy image Y into the wavelet coefficients 
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detail wavelet coefficients are then thresholded by a 
shrinkage operator τT with the pre-selected threshold .τ
This is based on the fact that small wavelet coefficients are 
more likely to be due to noise, and the large ones due to 
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the signal. An inverse wavelet transform is employed to 
transform the thresholded wavelet coefficients to obtain 
the denoised estimate of X .

Most wavelet thresholding methods are derived based 
on the marginal distributions of the wavelet coefficients 
using statistical models such as the generalized Gaussian 
distribution (GGD), and thus do not take the correlation 
between the wavelet coefficients into account. It is known 
that the wavelet coefficients in a given subband are 
spatially correlated. This means that a large wavelet 
coefficient will probably have large coefficients in its 
neighborhood, and vice versa. Moreover, the threshold 
τ is usually chosen to minimize a cost function such as the 
mean squared error (MSE). The conventional cost 
functions are based on the second order statistics, which 
are not optimal for the wavelet coefficients due to their 
non-Gaussianity.  

Therefore, we propose to use an information-theoretic 
criterion such as the two-dimensional joint entropy, which 
takes the higher order dependencies between the wavelet 
coefficients, as the cost function to determine the threshold:  

.log)( ∑∑−=
i j

ijij pppH                   (2) 

In Equation (2), ijp  refers to the joint probability of a pair 

of wavelet coefficients with values i and j occurring next 

to each other.  

3. PROPOSED DENOISING APPROACH 

3.1. Denoising based on the co-occurrence matrix of 
the magnitude of wavelet coefficients

In the wavelet domain, it has been observed with some 
consistency that the wavelet coefficients of natural images 
have a clustering property. In other words, a wavelet 
coefficient’s magnitude is not independent of its neighbors. 
In order to take the spatial relationship between the 
wavelet coefficients into account, we use the co-
occurrence matrix. 

The elements of the co-occurrence matrix represent 
the number of occurrences of pairs of wavelet coefficients 
separated by a certain distance in a given direction. 
Mathematically, it is defined as: 

,),(,),(:)),(),,{((),(, jvuIitsIvutscardjiC x ===θ

             })),(),((tan,)),(),,(( 1 θ=−= − vutsxvutsd     (3) 

where, }{⋅card  is the cardinality of a set, ),( ⋅⋅I  denotes an 

image of size N x N with L gray levels, ),( ⋅⋅d  is a distance 

measure, ∈),(),,( vuts N x N, and x,θ are the angle and 

the displacement between ),( ts and ),( vu  respectively. In 

general, θ is taken to be ,90,45,0 000  and .1350

 In the wavelet denoising scheme, the noisy image is 

transformed into the wavelet domain }.{ ),(
,

ok
tsw The 

magnitudes of the wavelet coefficients }{ stw
1  in each 

detail subband are then quantized by a uniform scalar 
quantizer with 1+L  levels:  
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where, 
L

wst |)max(|
=∆ is the step size. Note that the 

choice of the value of L  is important. If L  is too small, 
then some wavelet coefficients corresponding to the signal 
and noise are quantized to the same level, which makes it 
hard to distinguish this part of the signal from noise. On 
the other hand, if L  is too large, then each wavelet 
coefficient is quantized to a different level. This leads to a 
sparse co-occurrence matrix, which makes the entropy 
computation unreliable.  

From the quantized wavelet coefficients, the co-
occurrence matrix ),(, jiC xθ  is constructed. The entry ijp

of the normalized co-occurrence matrix gives us the 
probability of having two wavelet coefficients at levels i
and j  located at a distance x  and a direction θ :

                            
∑∑

=

i j
x

x
ij

jiC

jiC
p

),(

),(

,

,

θ

θ .                      (5) 

If τ , L≤≤ τ0 , is the threshold, then τ partitions 
the normalized co-occurrence matrix into four quadrants: I, 
II, III, and IV as shown in Fig. 1. It is known that the 
magnitudes of the wavelet coefficients corresponding to 
noise are smaller than those corresponding to the signal. 

Fig. 1. Quadrants of the normalized co-occurrence matrix 

The probabilities corresponding to these four 
quadrants are defined as follows: 

      ,
0 0
∑∑

= =

=
τ τ

i j
ijI pP         ,

0 1
∑ ∑

= +=

=
τ

τi

L

j
ijII pP             (6) 

      ,
1 0

∑∑
+= =

=
L

i j
ijIII pP

τ

τ
.

1 1
∑ ∑

+= +=

=
L

i

L

j
ijIV pP

τ τ
            (7) 

Normalizing the probabilities within each individual 
quadrant such that the sum of the probabilities of each 

                                                
1 To simplify notation, the superscript ),( ok is dropped and will  

   be used only when necessary for clarity.
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quadrant equals one, we get the following cell 
probabilities for these four different quadrants: 

     
I

ijI
ij P

p
p = ,                 τ≤≤ ji,0                         (8)  

     
II

ijII
ij P

p
p = ,         Lji ≤≤+≤≤ 1,0 ττ              (9) 

    
III

ijIII
ij P

p
p = ,         ττ ≤≤≤≤+ jLi 0,1             (10) 

and 

           
IV

ijIV
ij P

p
p = ,                Lji ≤≤+ ,1τ .                (11) 

Since small and large wavelet coefficients correspond to 
noise and the signal respectively, Quadrant I represents 
noise and Quadrant IV the signal. Quadrants II and III are 
ignored, because for most natural images the off-diagonal 
probabilities are negligible. 

Therefore, the 2-D joint entropy of noise can be 
defined as 

             ,log)(
0 0
∑∑

= =

−=
τ τ

τ
i j

I
ij

I
ijI ppH                      (12) 

and, the 2-D joint entropy of the signal can be written as 

          .log)(
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The total entropy of the partitioned wavelet coefficients in 
each detail subband is 

              ).()()( τττ IVIAll HHH +=                       (14) 

The total entropy should be maximized to make the 
wavelet coefficients in each quadrant homogenous. The 
homogeneity of the coefficients will ensure a good 
separation of the signal and noise. Hence, we 
maximize )(τAllH with respect to τ to get the optimal 

threshold .*τ  Finally, all of the wavelet coefficients in a 
given detail subband are soft-thresholded by *ττ ⋅∆=T

and inverse transformed to obtain the denoised image. 

3.2. Threshold selection based on the co-occurrence 
matrix of wavelet coefficients and their neighbors

In Subsection 3.1, the co-occurrence matrix is constructed 
based on the magnitude of the wavelet coefficients. 
However, the magnitude is often not sufficient to represent 
the spatial correlation between the wavelet coefficients. 
Therefore, it is common to incorporate additional spatial 
information in the co-occurrence matrix. There are various 
approaches for incorporating local information into the co-
occurrence matrix such as the mean of the neighboring 
coefficients. 

In a given detail subband, the mean of the 
M x M neighborhood of each wavelet coefficient is 

calculated in advance. The magnitudes of the wavelet 
coefficients and the corresponding neighborhood means 
are quantized with 1+L  levels and 1+S levels 
respectively to construct the co-occurrence matrix. The 
entry of the co-occurrence matrix represents how often 
different values of a wavelet coefficient and a 
neighborhood mean occur in a given distance and 
orientation. 

A threshold vector ),( γτ is determined using the 

maximum entropy principle. The two orthogonal lines 
intersecting at ),( γτ  divide the normalized co-occurrence 

matrix into four quadrants as illustrated in Fig. 2. 

Fig. 2. Quadrants produced by a threshold vector 

Similar to Subsection 3.1, the threshold vector *)*,( γτ  is 

selected to maximize the sum of the joint entropy of the 
signal and noise. 

4. EXPERIMENTAL RESULTS 

Two images Lena and Cameraman of size 256 x 256 are 
used as test images in order to evaluate the performance of 
our approach. The proposed approach is compared with 
VisuShrink [1]. VisuShrink is a well-known universal soft-
thresholding denoising method. 

In the experiments, the distance parameter x  of the 
co-occurrence matrix xC ,θ  is chosen to be equal to 1. The 

performance of our denoising approach based on the 
magnitude of wavelet coefficients is compared for the 
different directions .θ The PSNR results are shown in 
Table 1 with the best one underlined. 

Table 1. PSNR results for different angles and nσ

From Table 1, it is seen that the performance of the co-
occurrence matrix with four different angles is 
approximately the same. Although the performance with 

0135=θ  is the best for Lena image, this is not a universal 
result. In practice, the choice of the direction depends on 
the image. 
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Next, the performance of our approach is compared to 
VisuShrink. The method based on the magnitude of the 
wavelet coefficients is named CocurMagn, and the one 
based on the wavelet coefficients and their neighbors is 

named CocurNeigh. The directionθ  is set to ,00  and the 
dimension of the neighborhood is set to 3 by 3. Table 2 
gives the experimental results. 

Table 2. PSNR results for different methods  

It is concluded from Table 2, Figs. 3 and 4 that the two 
methods, CocurMagn and CocurNeigh, are always 
superior to the universal thresholding in MSE and visual 
quality with CocurNeigh being the best one. 

Fig. 3. Comparison of denoising results on Lena image. (a) 
Noisy observation (PSNR = 22.07 dB), (b) VisuShrink (PSNR = 
25.32 dB), (c) CocurMagn (PSNR = 25.69 dB), (d) CocurNeigh 
(PSNR = 26.13 dB). 

Fig. 4. Comparison of denoising results on Cameraman image. 
(a) Noisy observation (PSNR = 22.04 dB), (b) VisuShrink 
(PSNR = 21.08 dB), (c) CocurMagn (PSNR = 23.05 dB), (d) 
CocurNeigh (PSNR = 23.57 dB). 

5. CONCLUSIONS AND FUTURE WORK 

In this paper, a new image denoising approach is proposed 
using the co-occurrence matrix to characterize the intra-
scale dependencies between the wavelet coefficients. 
Since the wavelet coefficients do not follow a Gaussian 
model, an information-theoretic criterion is employed 
instead of the conventional cost functions such as MSE.
The application of the presented approach on test images 
shows that it is simple to implement, effective, and 
outperforms the classical soft-thresholding algorithms. 

The proposed denoising method can be further 
improved by exploring the extraction of different spatial 
features from the wavelet coefficients to construct the co-
occurrence matrix, and the different partitions of the co-
occurrence matrix such as a threshold line which may 
provide a better decision boundary between the signal and 
noise. 
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