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ABSTRACT

We present a general mathematical theory for lifting frames that
allows us to modify existing filters to construct new ones that form
Parseval frames. We apply our theory to design non-separable Par-
seval frames from separable (tensor) products of a piecewise lin-
ear spline tight frame. These new frame systems incorporate the
weighted average operator and the Sobel operator in directions that
are integer multiples of 45o. A new image denoising algorithm is
then proposed tailored to the specific properties of these new frame
filters. We demonstrate the performance of our algorithm on a di-
verse set of images with very encouraging results.

1. INTRODUCTION
Digital images are often degraded by noise in the acquisition and/or
transmission phase. The goal of image denoising is to recover the
true/original image from such a distorted/noisy copy. This is ac-
complished via a combination of methods involving suitable filter-
ing/transforms and statistical estimation. Typically, the image is
transformed onto some domain where the noise component can be
identified more easily, and a statistical estimation is performed to
identify and remove its influence.

In recent years, a wide class of image denoising algorithms
have been based on the discrete wavelet transform. The usefulness
of the wavelet transform was first demonstrated by Donoho and
Johnstone [1, 2, 3], when they proved that thresholding estima-
tors in a wavelet basis have nearly minimax risk for sets of piece-
wise regular images. For the case of additive Gaussian noise they
suggested two thresholding functions, the soft-threshold ηS

T (x) =
sgn(x)·max(|x|−T, 0) and the hard-threshold ηH

T (x) = (x or 0),
depending on whether |x| > T or not, respectively. The threshold
T is to be selected using VisuShrink [1] or SureShrink [3].

Coifman and Donoho [4] established that the use of undeci-
mated transforms minimizes artifacts in the denoised data; their
translation invariant denoising scheme is equivalent to threshold-
ing in the shift-invariant redundant representation implemented by
a non-subsampled filter bank, or frame. In addition, it has been
shown [5, 6, 7, 8] that a redundant representation is substantially
superior to a non-redundant representation for image denoising in
terms of mean-squared error and signal-to-noise ratio.

Several different types of frames have been applied to image
denoising, such as the “steerable pyramid” [9, 10] and the dual-
tree complex wavelet transform [11, 12, 13]. To improve the se-
lection criteria for the threshold T , such methods depart from the
minimax framework, which is optimal when no a priori informa-
tion about the signal itself is assumed, and move to a Bayesian
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approach, where both the noise and the true image signal coef-
ficients in the wavelet domain can be modeled using some prior
distribution [14, 15, 6]. Even better results can be obtained by ex-
ploiting the fact that wavelet coefficients are statistically depen-
dent [16, 17]. Recent examples include the bivariate model of
Sendur and Selesnick [12, 13] and the Gaussian Scale Mixtures
(GSM) model of Portilla et al. [10].

Our work in this paper complements the existing literature.
We design non-separable Parseval frames from separable (tensor)
products of a piecewise linear spline tight frame. These new non-
separable frame systems incorporate the weighted average opera-
tor and the Sobel operator in directions that are integer multiples
of 45o. We propose a mixed thresholding strategy that is tailored
to the specific operators in this tight frame and takes advantage of
the dependencies between them.

The remainder of this paper is organized as follows. Section
2 provides a method of modifying existing frames in order to pro-
duce new ones and an application to construct a frame-based fil-
tering scheme. This scheme is employed in Section 3 to design
a denoising algorithm. Our experimental results are presented in
Section 4, while our conclusions are given in Section 5.

2. CONSTRUCTING NEW FRAMELET FILTERS
As explained in the introduction, redundant representations, such
as frames, are preferable for denoising purposes. Designing frames
also proves to be more efficient than designing bases, especially
when one designs Riesz or orthonormal bases in multi-dimensions
arising from scaling functions [18]. A Parseval frame (PF) for a
Hilbert space is a tight frame with bounds equal to 1. The ad-
vantage of PF versus other types of frames is that the same set of
vectors can be used for decomposition and reconstruction, just as
in the case of orthonormal bases. Exact frames (frames having no
redundancy) are Riesz bases and vice-versa.

We define the translation operator Tn acting on �2(Zd) by
Tns(m) = s(m − n), for every n,m ∈ Z

d. Our goal is to
construct digital filters using the integer translates of certain finite-
length filters. More precisely, the Hilbert space of digital sig-
nals we wish to work with in our applications is �2(Zd), where
d = 2, although the results presented in this section hold true for
any natural number d. An element K of �2(Zd) is a digital filter
if its Fourier transform K̂ is a bounded function. This filter acts
on every digital signal by convolution (i.e., s → s ∗ K, where
s ∈ �2(Zd)).

We begin by stating the following general result, the proof of
which is based on Lemma 2.5 [19].

Proposition 1 Assume that Ki, with i = 0, 1, . . . , l is a family
of digital filters whose integer translates form a frame for �2(Zd).
For a given positive integer p, let U be a 2πZ

d-periodic (p +
1) × (l + 1) matrix-valued function whose entries (U(ω))q,r are
continuous. If there exists A > 0 such that for almost every ω ∈
[−π, π)d we have A‖x‖ ≤ ‖U(ω)x‖ for all x ∈ C

l+1, then the
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matrix multiplication U(ω)(K̂0(ω), K̂1(ω), . . . , K̂l(ω))t, defines
a new family of digital filters whose integer translates form a frame
for �2(Zd). If, in particular, U(ω) is an isometry, for almost every
ω ∈ [−π, π)d, then the resulting and the original frames have the
same frame bounds.

In particular, we use Prop. 1 to lift the frame described by Ron and
Shen [20] as being the simplest example of a compactly supported
tight spline frame. We select splines of degree one in order to keep
the number of wavelets to a minimum. The low-pass m0, bandpass
m1, and high-pass m2 filters, associated with the scaling function
φ and the two wavelets ψ1 and ψ2, respectively, are the following:
m0(ω) = cos2(ω/2), m1(ω) = i(

√
2/2) sin(ω), and m2(ω) =

sin2(ω/2). Note that |m0(ω)|2 + |m1(ω)|2 + |m2(ω)|2 = 1, for
all ω ∈ [−π, π). Therefore, the translates Tn (n ∈ Z) of the im-
pulse responses h0 = (1/4) [1, 2, 1], h1 = (1/4)

[√
2, 0,−√

2
]

and h2 = (1/4) [−1, 2,−1] of m0, m1 and m2 form a Parseval
frame for �2(Z).

The Riesz scaling function φ and the wavelets ψ1 correspond-
ing to this frame have some interesting properties: 1) φ is interpo-
latory; 2) φ, ψ1 and ψ2 are supported on the interval [−1, 1]; and
3) φ and ψ2 are symmetric while ψ1 is anti-symmetric. Thus, ψ1

can be used as a first-order singularity detector while ψ2 can be
used as a second-order singularity detector. This is the reason for
selecting these framelets for the proposed denoising scheme.

The tensor product of this PF with itself forms nine separable
(tensor product) filters: mp,q(ω1, ω2) = mp(ω1)mq(ω2), where
p, q ∈ {0, 1, 2}. We have the following equality:

2∑
p,q=0

|mp,q(ω)|2 = 1, for ω ∈ [−π, π)2, (1)

so this is another PF. We view m0,0 as a low-pass filter, and the
remaining eight filters as band-pass and high-pass. These filters
comprise the UHF9 filter bank. Their corresponding filter taps are
given by the nine 3 × 3 matrices Mp,q := ht

phq .
We note that the filters M0,1 and M1,0 in the UHF9 filter bank

are the Sobel operators detecting vertical and horizontal edges.
This motivates us to augment bank UHF9 with two diagonal first
order singularity detectors.
The UHF11 filter bank: Eq. (1) implies that vector v1, given by:
v1 := (m0,0, m0,1, m1,0, m1,1, m0,2, m2,0, m2,1, m1,2, m2,2)

t

is unitary in C
9 for every ω in [−π, π)2. To construct the new

filters, we first “clone” the pair of filters (m0,1, m1,0) into the
quadruplet (m0,1, m1,0, m0,1, m1,0). To achieve this isometri-
cally, we define the mapping D := (1/

√
2)[I2 I2]

t from C
2 into

C
4. We then use the rotation matrix R := (1/

√
2)[1 1;−1 1]

to entwine the two new copies while leaving the originals un-
changed. The result is the isometry matrix E:

E :=

[
I2 0
0 R

]
D =

[
(1/

√
2) 0 (1/2) −(1/2)

0 (1/
√

2) (1/2) (1/2)

]t

.

Next, by considering the decompositions C
9 = C ⊕ C

2 ⊕ C
6

and C
11 = C ⊕ C

4 ⊕ C
6, we define the matrix-valued function

U(ω) := [1 0 0; 0 E 0; 0 0 I6], which is also unitary.
Applying U to v1 we derive another unit vector in C

11 for ev-
ery ω. By Prop. 1, v2 = Uv1 produces 11 filters whose integer
translates generate a PF of �2(Z2). We call this the UHF11 fil-
ter bank. In summary, the UHF11 filter bank is implemented by
the following filters: K0 = M0,0 is the low pass filter; the high–
pass and band–pass filters are K1 =

√
2

2
M0,1, K2 =

√
2

2
M1,0,

K3 = (1/2)(M0,1 + M1,0), K4 = (1/2)(M0,1 − M1,0), K5 =
M1,1, K6 = M0,2, K7 = M2,0, K8 = M1,2, K9 = M2,1, and
K10 = M2,2.

We note that the second and third coordinates of v2 still define
the Sobel operators (scaled by (1/

√
2)) in the horizontal and ver-

tical directions, respectively. In addition, the impulse responses of
the fourth and fifth coordinates of v2 are given by:

√
2

8

⎡
⎣1 1 0

1 0 −1
0 −1 −1

⎤
⎦ and

√
2

8

⎡
⎣0 −1 −1

1 0 −1
1 1 0

⎤
⎦ ,

respectively. These two filters act as derivatives parallel to the di-
rections (−π/4) and (π/4) or, equivalently, as Sobel operators in
these directions.

Several key properties of the Ron–Shen frame are also lifted to
UHF9 and UHF11. The two frame wavelets ψ1 and ψ2 have van-
ishing moments of order 1 and 2, respectively (i.e.,

∫
ψ1(x) dx =

0 and
∫

xpψ2(x) dx = 0 for p = 0, 1). Thus, constant signals
cannot pass through the band–pass filter m1, while neither con-
stant nor linear signals can pass through the high–pass filter m2.
Due to the linearity of integration these properties impose simi-
lar characteristics to the UHF9 filter-bank which are subsequently
inherited by the UHF11 filter bank.

The technique employed to construct the UHF11 filter bank
relies on Prop. 1 in two ways. First, to construct isometries that in-
crease the redundancy of an existing filter-based PF by producing
scaled duplicates of certain of those filters; and second, to apply
unitary operators on certain collections of those filters to produce
new filters with desirable characteristics (e.g., geometry). In both
cases the resulting frame is a Parseval frame. This is a versatile
technique that can be employed in a much more general setting
than the example discussed above.

3. PROPOSED ALGORITHMS
Let X be a noisy image. We filter X using the UHF11 filter bank.
We stress that the outputs of this filter bank are undecimated. Let
Ym be the output of the image X through the m-th band (i.e.,
Ym = X ∗ Km). We separate the ten high-pass subband outputs
into two groups, m = 1, . . . , 5 and m = 6, . . . , 10, respectively.
Note that filters in the first group can be used to detect first order
singularities, while filters in the second group can be used to de-
tect second order singularities. Accordingly, we choose different
thresholding strategies for each of the two groups.

For the first group, we modify the coefficients in the Ym,
m = 1, . . . , 5 using the hard threshold operator ηH

T , where T =
α · σn

√
2 log N . Here α is a thresholding factor, N is the num-

ber of pixels in X, and σn is the noise variance. The threshold
σn

√
2 log N is a good choice for large values of N when a unitary

wavelet transform is used [1]. However, the transforms induced by
convolution with Km are only isometric, and not unitary. This re-
sults in an overall reduction of the energy contribution of the noise
in the transformed image [21]. Therefore, the threshold needs to
be scaled by a factor α, where 0 < α < 1, which is selected ex-
perimentally. The criterion for its selection is the maximization of
PSNR. If σn is not known, it is estimated by the robust median
estimator σ̂ = 1

0.6745
Median(|YHaar[i, j]|), where YHaar is the

output of X using 1–level Haar high-pass filtering.
Our proposed algorithm jointly thresholds Y1 and Y2 to ob-

tain Ỹ1, Ỹ2. It should be noted that the proposed shrinkage of
the wavelet coefficients is not the same as the classical wavelet
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shrinkage. For m = 1, 2:

Ỹm =

{
Ym, if |Ym| > T1 or (|Y3| or |Y4|) > T2

0, otherwise
(2)

where T1 = (1/2)T and T2 = (1/8)(2 +
√

2)T . These scaled
thresholds are obtained by computing the maximum magnitude of
the response of the filters K1 and K4, respectively. Similarly,

Ỹm =

{
Ym, if |Ym| > T2 or (|Y1| or |Y2|) > T1

0, otherwise
(3)

for m = 3, 4. For Y5, we use the hard thresholding operator:

Ỹ5 = ηH
T1(Y5). (4)

Outputs in the second group are denoised by applying locally
adaptive window-based denoising using MAP (LAWMAP) [15].
We assume that the coefficients Ym[i, j] are independent zero-
mean Gaussian variables with unknown variance σ2[i, j]. An es-
timate of σ2[i, j] is formed based on a local neighborhood Ni,j

which is a square window of size M centered at Ym[i, j]. We
postulate an exponential prior fσ(σ2) = λexp(−λσ2). Given this
prior, the maximum a posteriori (MAP) estimator for σ2[i, j] is
given by:

σ̃2[i, j] =
M

4λ

[
−1 +

√
1 + (8λ/M2)

∑
Y2

m[p, q]

]
− σ2

n,

where the sum is over all [p, q] inNi,j . We impose a positivity con-
dition by setting all negative estimates equal to zero, as suggested
by Mihcak et al. [15], since it is possible to obtain negative values
from the actual MAP estimate if M is too small. Thus, we use
σ2[i, j] = max

(
0, σ̃2[i, j]

)
. With the estimated σ[i, j] and σn,

we apply a Wiener (least-squares fit) filter to all Ym[i, j] ∈ Ym,
m = 6, . . . , 10:

Ỹm[i, j] =
σ2[i, j]

σ2[i, j] + σ2
n

Ym[i, j]. (5)

We can further decompose the output Y0 and denoise the wavelet
outputs using the above described process. Our algorithm can be
summarized as follows:

Algorithm 1 (UHDA1)
0: Input the noisy image X, a threshold factor α, and the number
of decomposition levels J .
1: Decompose the image X up to level J using the UHF11 filter
bank to obtain Ym, m = 0, . . . , 10.
2: Compute Ỹm, m = 1, . . . , 10. using Equations (2)–(5).
3: Reconstruct image X̃ from Y0 and Ỹm, m = 1, . . . , 10 by
using the UHF11 filter bank.

We can improve UHDA1 as follows: Let w be a weight between 0

and 1. The linear combination (1−w)X+wX̃ will be considered
as a new noisy image. Using UHDA1, we obtain a new denoised
image. We iterate the process and change the weight w:
Algorithm 2 (UHDA2)
0: Set the weight vector w = [0.2, 0.4, 0.6, 0.8, 0.9]. Input the
noisy image X, a threshold factor α, and the number of decompo-
sition levels J .
1: For k = 1, . . . , length(w) do

Apply UHDA1 to X to obtain X̃

Replace X by (1 − w(k))X + w(k)X̃

2: Output X̃;

Table 1. PSNR after iterative application of UHDA1 with various
weights w.

����w
σ

10 15 20 25 30

Barbara (α = (1/4))
0 32.59 29.90 27.96 26.50 25.38

0.2 32.72 30.10 28.17 26.71 25.57
0.4 32.83 30.27 28.40 26.94 25.79
0.6 32.89 30.42 28.60 27.18 26.04
0.8 32.88 30.46 28.74 27.36 26.24
0.9 32.73 30.56 28.80 27.45 26.36

Yogi (α = (
√

2/4))
0 35.30 31.93 29.37 27.46 26.03

0.2 35.56 32.32 29.90 27.98 26.50
0.4 35.82 32.67 30.40 28.56 27.07
0.6 36.04 32.96 30.78 29.07 27.64
0.8 36.15 33.12 31.01 29.37 28.02
0.9 36.17 33.16 31.09 29.49 28.18

4. RESULTS
We tested our proposed algorithms on a number of images. In this
section we present selected results for four. White Gaussian noise
with zero-mean and standard deviation σn = 10, 15, 20, 25, 30
was added to the four images, and denoising performance was
evaluated using peak signal-to-noise ratio (PSNR) in dB as a per-
formance metric.

Performance results for the two proposed algorithms are pre-
sented in Table 1. The results with w = 0 are produced by UHDA1.
We observe that the iterative application of UHDA1 with varying
weights does improve the PSNR. It is reasonable to expect that
this process cannot be used indefinitely, and will eventually lead
to deteriorated performance. Thus, the choice of weights and the
number of iterations necessary need to be carefully calibrated, with
more iterations being admissible for larger noise levels. However,
the particular choice of weights proposed in UHDA2 is shown
to be quite adequate in finding a good balance, with gains over
UHDA1 of up to 2 dB in some cases (such as the Yogi image).

We also benchmarked UHDA2 against various other methods
reported in the literature. Here, we present results comparing it
to three other methods (see Table 2). The first is implemented by
the wiener2 function in the software package MATLAB. We also
tested implementations of the bishrink [13], and the GSM [10] al-
gorithms. We observe that our method outperforms the others in
terms of PSNR when applied to the Peppers and Yogi images, and
produces similar results for the Boat image. Figure 1 depicts the
results for the Peppers image. Note that our method produces de-
noised images that exhibit noticeably less ringing artifacts around
edges compared to the other methods.

5. CONCLUSIONS
This paper developed a general theory of constructing new frames
from existing ones. Starting from a piecewise linear spline tight
frame in 1D, we designa Parseval frame lifted using our theory.
These non-separable framelets are capable of detecting first order
singularities in directions that are integer multiples of 45o. To il-
lustrate the appeal of these framelets, two image denoising algo-
rithms were proposed, tailored to their specific properties. Our
results indicate that our algorithms produce denoised images with
less ringing artifacts and similar, or better, PSNR when compared
to other state of the art algorithms.
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Table 2. Comparison of PSNR values of results for different test
images and noise levels σ; (a) wiener2, (b) bishrink, (c) GSM, and
(d) UHDA2.

σ / PSNR wiener2 bishrink GSM UHDA2
Peppers256 (α = (1/4))

10 / 28.13 30.70 33.48 33.77 34.24
15 / 24.61 29.56 31.35 31.74 32.10
20 / 22.11 28.44 29.80 30.31 30.38
25 / 20.17 27.42 28.66 29.21 29.21
30 / 18.59 26.50 27.77 28.30 28.11

Yogi (α = (
√

2/4))
10 / 28.13 30.67 33.99 33.92 36.17
15 / 24.61 29.26 31.13 31.26 33.16
20 / 22.11 27.91 29.19 29.45 31.09
25 / 20.17 26.71 27.78 28.11 29.49
30 / 18.59 25.68 26.70 27.05 28.18

Boat (α = (1/4))
10 / 28.13 30.02 32.99 33.58 33.20
15 / 24.61 29.03 31.23 31.70 31.61
20 / 22.11 28.07 29.94 30.38 30.28
25 / 20.17 27.18 28.93 29.37 29.17
30 / 18.59 26.36 28.12 28.51 28.14

their code in order to compare our results, and for their very helpful
comments. This work was supported in part by NIH 5ROIEB00148-
02, NSF IIS-9985482, NSF CHE-0074311 and Welch grant E-
0608.
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