
RECURSIVE DECONVOLUTION OF MULTISENSOR IMAGERY USING
FINITE MIXTURE DISTRIBUTIONS

A. Giannoula and D. Hatzinakos

Dept of Electrical and Computer Engineering, University of Toronto, M5S 3G4, Toronto
e-mail: {alexia, dimitris}@comm.utoronto.ca

ABSTRACT

In this paper, the case where multiple degraded (blurred and
noisy) acquisitions of the same scene are available, is investigated.
An efficient iterative deconvolution system is introduced, where
the multisensor images are fused, based on the classification of
each image in a predetermined number of classes that represent
the components of a finite mixture of normal densities (FMN). The
EM algorithm is utilized for the learning of the FMN model. The
recursive employment of the classification and fusion processes,
followed by an optimized adaptive filtering, converges to a global
enhanced version of the original scene in only a few iterations. Ex-
perimental results establish the efficiency of the proposed scheme.

1. INTRODUCTION

Processing of data from different sensors has been efficiently used
in satellite remote sensing, in computer vision and medical appli-
cations, for a better understanding of the given situation. Particu-
larly in the case where multiple acquisitions of the same scene are
available, e.g. in magnetic resonance imaging (MRI) where mul-
tiple fast scans of the same organ may be obtained, restoration is
frequently performed on the degraded data that exhibits motion-
induced blurring or defocusing effects [1, 2].

In this paper, an efficient iterative deconvolution technique for
restoration of such multi-source images is proposed. Specifically,
M filtered outputs of the initially distorted images are, first, mod-
elled using a finite mixture of normal (FMN) densities [3]. The
proposed algorithm attempts to derive for each image, optimal
groupings of the observations (image pixels) into K classes, by
assuming a K-component normal mixture model for the overall
distribution of the data (for any pixel x):

fm(x|Ψm) =

K∑
k=1

πm,kfm,k(x|θm,k), m = 1, . . . , M (1)

where θm = (µm,1, . . . , µm,K , σ2
m,1, . . . , σ

2
m,K)T contains the

distinct unknown mean and variance values of these K Gaussian
distributions and Ψm = (θm

T , πm,1, . . . , πm,K) denotes all the
unknown parameters, for image m. The vector (πm,1, . . . , πm,K)

represents the mixture proportions, where
∑K

k=1 πm,k = 1, for
each image (they can be interpreted as the prior probabilities of
the pixel classes). Essentially, the problem becomes that of fitting
the FMN model to the image histogram (“true” distribution). The
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k-th normal component density of the mixture, can be described
by the gaussian kernel:

fm,k(x|θm,k) =
1√

2πσm,k

exp{− (x− µm,k)2

2σ2
m,k

}, m = 1, . . . , M

(2)

For the problem under investigation, the estimation of the gaus-
sian component parameters is performed using the popular expec-
tation-maximization (EM) algorithm [4]. Afterwards, the multi-
sensor images are classified using a two-step classification proce-
dure and for each classified image, a measure of the total consis-
tency level (TCL) is calculated [5]), based on the classification of
the pixels in some local neighborhood. The TCL values are next
injected as the fusing weights, leading to the formation of a fused
image. Finally, the error between the fused image and each fil-
tered output is used to control the adaptation of the corresponding
FIR filter coefficients. The overall block diagram of the adaptive
restoration system can be schematically seen in Fig. 1.

2. DESCRIPTION OF THE ALGORITHM

2.1. FMN modelling and parameter estimation

Let g1, g2, . . . , gM be M different degraded sensor images of the
same scene (assumed registered). Each acquired image gm has
undergone a blurring process according to the linear degradation
model [1]:

gm = sm ∗ hm + nm (3)

where gm is the degraded image from the m-sensor, sm is the
original undistorted m-scan of the scene, hm is a blurring point-
spread function (PSF) and nm is zero-mean additive noise. The ∗
operator denotes a convolution process.

At the iterative restoration process, each image is initially fil-
tered with um, i.e. fm = gm ∗ um. Next, each filtered output fm

is approximated using the finite mixture of normal densities, de-
scribed in equation (1), thus producing fF MN

m , m = 1, . . . , M .
The model parameters (µm,k, σ2

m,k, πm,k) for each image need,
next, to be estimated, for k = 1, . . . , K (K denotes the number of
the classes representing the original scene and it is assumed to be
fixed and identical for all degraded images). This estimation can
be achieved by maximizing the joint likelihood function1:

1It should be, also, noted that asymptotic (weak) independence of the
image pixels has been assumed.
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Figure 1: Block diagram of the proposed recursive restoration technique.

Lm(Ψm) =

N∏
i=1

[
K∑

k=1

πm,kfm,k(xi|θm,k)

]
, m = 1, . . . , M

(4)
where N denotes the number of the pixels of the image fF MN

m .
Numerical estimation of the gaussian mixture parameters is per-
formed using the popular expectation-maximization (EM) algo-
rithm [4]. The final updating rules for the ML estimates of the
FMN model (the mean, variance values and the mixing factors of
the clusters) for m = 1, . . . , M , are formulated as follows:

µr+1
m,k =

N∑
i=1

xip(θr
m,k|xi)/

N∑
i=1

p(θr
m,k|xi)

varr+1
m,k =

N∑
i=1

p(θr
m,k|xi)(xi−µr+1

m,k)(xi−µr+1
m,k)T /

N∑
i=1

p(θr
m,k|xi)

πr+1
m,k =

1

N

N∑
i=1

p(θr
m,k|xi), k = 1, . . . , K (5)

where varm,k=σ2
m,k , the current iteration is denoted by r and

p(θm,k|xi) represents the posterior probability, described by the
Bayes rule2. Initial values µ0

m,k, var0
m,k and π0

m,k are approxi-
mated using the K-means algorithm.

2.2. Two-step image classification and fusion

Given the estimated FMN parameters, the process of classification
involves the assignment of each pixel of the images fm, m =
1, . . . , M , to the appropriate k-th component of the gaussian mix-
ture model, for k = 1, . . . , K. The goal of this classification is,

2p(θr
m,k|xi) =

fm,k(xi|θr
m,k)πr

m,k

fm(xi|Ψr
m,k

)

essentially, the derivation of the appropriate fusing weights that
will be used to effectively fuse the filtered outputs and produce an
improved global image.

(i) A single-pass (soft) maximum-likelihood (ML) classifica-
tion is performed, where each image pixel xi is assigned to the
k-th gaussian component with the highest individual likelihood.
Equivalently, based on (2), each pixel xi is assigned a label (class)
k, such that: log(σm,k)+(xi−µm,k)2/2σ2

m,k yields its minimum
value for k = 1, . . . , K.

(ii) A stochastic refinement follows afterwards, where each
pixel xi is randomly visited and is classified in class k which min-
imizes

log(σm,k) − logpm(ci = k|nbhi) + (xi − µm,k)2/2σ2
m,k (6)

where pm(ci = k|nbhi) is analogous to the cluster prior probabil-
ity πm,k. However it has a local nature and it can be considered
as the conditional prior of the class ci of a pixel xi, given the clas-
sification of its neighboring pixels nbhi (e.g. 3x3). In fact, this
conditional probability can be simply described by the proportion
of the pixels in this neighborhood, that have been assigned to the
same class as xi. The above minimization resulted from attempt-
ing to maximize the joint likelihood pm,k(xi, ci|nbhi)

3 of a pixel
xi and its class label ci, conditioned by the local classification in-
formation nbhi. After convergence to a steady classification point,
the final classified images fc

m, m = 1, . . . , M are generated.
In the subsequent fusion of the filtered images fm, m = 1, . . . , M ,

the more salient features are expected to be extracted, in order to
produce a more regularized global result, consistent to the normal
mixture model of the original scene. In order to generate appropri-
ate fusing weights, measures of the total consistency level TCLm

are calculated for each classified image fc
m [5], such that images

with higher such values will affect the final formation of a global

3pm,k(xi, ci|nbhi) = pm(ci = k|nbhi)fm,k(xi|θm,k)
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result to a greater extent. Specifically, the total consistency level
for image fc

m is described by:

TCLm =
N∑

i=1

[
K∑

k=1

δ(ci, k)pm(ci = k|nbhi)fm,k(xi|θm,k)

]

(7)
where δ(ci, k) is the Kronecker delta. This formula is local in na-
ture, but gives -overall- a global assessment for the consistency of
the entire image classification, by summing over all pixels. For
these TCL metrics, the aforementioned joint likelihoods are max-
imized. Finally, the fused image fTCL is formed as a weighted
sum:

fTCL =

∑M
m=1 TCLm · fm∑M

m=1 TCLm

(8)

3. OPTIMAL FILTER ADAPTATION

The last step of the proposed algorithm involves the adaptation
of each filter um, of size NuxNu, that will be fed back into the
recursive deconvolution system. For this reason, the cost function
Jm used in the restoration process, is defined as:

Jm =
∑
xi

(fTCL(xi) − fm(xi))
2, m = 1, . . . , M (9)

for all the pixels xi. Taking into account that fm = gm ∗ um,
equation (1) can be written as follows:

fm(xi) =
K∑

k=1

πm,k{um(xi) ∗ gm,k(xi|θm,k)} (10)

where gm,k denotes the k-th normal component of the mixture
approximation for the degraded image prior to filtering (note also
that the term Ψm has been dropped for convenience of notation).
Similarly, by combining (1), (8) and the convolution equation, the
fused image fTCL(xi) can be expressed by the following formula:

fTCL(xi) =
M∑

s=1

ws

[
K∑

k=1

πs,k{us(xi) ∗ gs,k(xi|θs,k)}
]

(11)

where ws denotes the normalized TCLs fusing weights, such that∑M
s=1 ws = 1.
A steepest descent minimization routine is, next, adopted:

ut+1
m (l) = ut

m(l) − d · ∇Jm[um(l)] (12)

where ∇Jm[um(l)] denotes the gradient of the cost function Jm

with respect to the filter coefficients um(l) and d > 0 is an ap-
propriate update step-size. The recursive law for the coefficients
um(l) of each filter is, therefore, formulated as:

ut+1
m (l) = ut

m(l) − 2d
∑
xi

[(fTCL(xi) − fm(xi))

·
(

M∑
s=1

K∑
k=1

wsπs,kgs,k(xi − l|θs,k) (13)

−
K∑

k=1

πm,kgm,k(xi − l|θm,k)

)]
, m = 1, . . . , M

where t ≥ 0 represents the current iteration and the filters are
initialized with a value of unity in the center of the FIR window
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Figure 2: (a)-(c) Degraded images, (d)-(f) individual restorations
after 5 iterations, (g)-(i) true and approximated histograms using
the FMN model (shown with solid bars and the star (∗) symbol,
correspondingly), (j)-(l) classified images, (m) enhanced fused im-
age at the 5-th iteration and (n) undistorted image.
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Figure 3: (a)-(d) Real degraded MR images and (e) the enhanced
fused version of the organ after 6 iterations.

and zero elsewhere (discrete unit impulse). Convergence of the
algorithm can be achieved using several numerical optimization
techniques [6]. Alternatively, the conjugate gradient method can
be, also, implemented for faster convergence. However, due to
the normalization of {um} at every iteration in order for the filter
coefficients to sum up to unity, conjugate gradient minimization is
computationally inefficient for such a method of constraint4.

4. EXPERIMENTAL RESULTS

In this section, various experiments were performed to illustrate
the efficiency of the proposed restoration scheme, both with syn-
thetic and real data. To simulate a multiframe environment, the
128 x 128 grayscale goldhill image, seen in Fig. 2(n), was bilin-
early interpolated to get a 256 x 256 image, which was next blurred
using a 7 x 7 Gaussian PSF and white Gaussian noise was added,
producing a blurred signal-to-noise ratio (BSNR) approximately
equal to 60 dB. The degraded image was, then, downsampled so
as to generate 4 lower-resolution images of size 128 x 128. Three
of these degraded images were finally utilized, seen in Fig. 2(a)-
(c), where each one was subject to different blurring, noise and
warping (constant shift) artifacts.

4Convexity and uniqueness of the minimum have been shown in [2].

A 5-component mixture of normal densities (K = 5 classes)
was assumed, as it was empirically shown that it approximated
reliably the true histogram of these images (see Fig. 2(g)-(i))
and produced the best restoration results. The proposed recursive
method converged to very good estimates of the solution in only
5 iterations. Termination of the algorithm was decided when ex-
cessive noise amplification started being observed visually. The
individual restorations at the 5-th iteration are shown in Fig. 2(d)-
(f), correspondingly, while the finally enhanced fused image can
be seen in Fig. 2(m), exhibiting evident sharpening results. Re-
garding the classification process after convergence of the EM al-
gorithm, the local-based refinement following the initial rough ML
classification, removed most of the misclassifications of the first
pass and converged at its second pass, such that no further pixels
needed to update their class labels (see Fig. 2(j)-(l)). Finally, the
three FIR 3 x 3 filters were recursively updated according to the
optimization analysis of Section 3, simulated by a steepest-descent
routine (an appropriate step-size of d = 0.0003 was set).

Restoration results were also obtained for four real MR scanned
images, shown in Fig. 3(a)-(d). A choice of K = 2 was adopted
and d was set equal to 0.001. The restoration algorithm converged
after 6 iterations, generating the fused image of Fig. 3(e), where
the sharpened details can be easily observed (note that the image
histograms and the corresponding individual restorations are not
shown here due to lack of space).

Finally, it should be noted that a wrong model assumption (in-
appropriate choice of K) may render the algorithm instable and
divergent. Future work involves elaboration on automatic methods
for the adoption of the most accurate FMN model.

5. CONCLUSIONS

An efficient adaptive fusion-and-filtering technique was introduced
in this paper, for improving the quality of an image scene when
multiple blurred and noisy acquisitions were available, using fi-
nite mixtures of normal densities. An enhanced fused version was
generated, based on ML analysis and a two-step image classifica-
tion. The adaptation of the filter coefficients was controlled by a
steepest descent optimization routine. Both simulated and real ex-
periments demonstrated efficient restoration and sharpening of the
degraded multisensor imagery.
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