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ABSTRACT 

It is well recognized that blind deconvolution is a severely 

ill-posed problem and proper constraints on the image and 

the system point spread function (PSF) should be applied 

to counteract the ill-poseness. In this paper we investigate 

a novel PSF constraint, the monotonicity, which means 

the value of the PSF monotonically decreases (or not 

increase) from the center of its support. We regard the 

monotonicity as a common property of many simplified 

but well accepted PSF models, such as the geometrical 

model of defocus, the Gaussian model and the synthetic 

model in astronomical imaging. The property is utilized as 

a PSF constraint in a novel iterative blind deconvolution 

algorithm RL-CLSE. Experiments on real microscopic 

data show that the proposed constraint can significantly 

improve the quality and stability of blind deconvolution. 

1. INTRODUCTION 

In practical imaging applications the recorded image is 

usually a noisy and blurred version of the original scene, 

which can be formulated as 

    *g f d n ,     (1) 

in which g stands for the recorded image, f the ideal 

‘clear’ image, d the system point spread function (PSF), n

the additive noise, and ‘*’ the sign of convolution [1]. A 

lot of image restoration algorithms have been developed 

to retrieve the clear image with a known PSF [1], [2]. 

However, in many cases, the PSF is not known a priori so 

that both the clear image and the PSF have to be estimated 

from the recorded image. Such a problem is called blind 

deconvolution, one of the most challenging problems in 

image processing.  

It is well recognized that blind deconvolution is 

severely ill-posed and proper constraints should be 

applied to get a reasonable and stable solution [3], [4]. 

Only a few of these constraints can be used both on the 

image and the PSF, such as the nonnegativity; while more 

of them are especially for the PSF, because the PSF is 

physically determined by the system and much less 

diversified than the image. For example, it is often 

assumed that the image degradation process caused by the 

PSF will not change the mean value of the image; 

therefore the integral of the PSF against its support region 

should be a unit [3]. Besides, the PSF should be band 

limited for diffraction limited imaging systems, and 

radically symmetric for systems with circular lens and 

apertures [5]. In addition, the PSF are sometimes assumed 

to be partially known and constrained to be the sum of a 

known deterministic part and an unknown random part [6].  

In this paper we will address another PSF constraint, 

the monotonicity, which means that the value of the PSF 

monotonically decreases (or not increase) from the center 

of its support. In blind deconvolution, this constraint was 

first suggested by Holmes in 1992 [5]. To our knowledge, 

however, no further investigation or algorithm following 

this suggestion has been reported hitherto. One of the 

possible reasons, as we presume, might be that it is 

doubtful whether the practical PSF is really monotonic. It 

should be admitted that a physically determined PSF can 

be very complex and far from being monotonic; but in 

deconvolution applications simplified PSF forms are also 

widely accepted and many of them are monotonic. For 

example, the physical model of a defocus PSF has many 

side lobes, but it can also be geometrically modeled as 

simple as a uniform disk [7]. It is reported that under low 

SNR conditions such a monotonic geometrical model can 

be used in the place of the parameter-sensitive physical 

counterpart without significant loss in the deconvolution 

quality [8]. Another example of the simplified monotonic 

PSF is the Gaussian model, which often serves as the long 

exposure PSF caused by the unpredictable atmospheric 

turbulence in ground based astronomical imaging [9].

Moreover, sometimes astronomical images can also be 

deconvolved with a synthetic monotonic PSF which has a 

radically symmetric form: 
2

2
PSF( ) (1 )

r
r

R
,   (2) 

in which R and are parameters obtained by fitting the 

model with some given stars, and r the distance from the 

original [2].  
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We regard the monotonicity as a common property of 

those simplified but well accepted PSF models and 

consider it a reasonable constraint on the PSF in blind 

deconvolution. In the rest of the paper, Section 2 presents 

an IBD based algorithm RL-CLSE to apply this constraint

and Section 3 tests it with real data. Section 4 gives 

conclusions and perspectives of the paper. 

2. ALGORITHM 

Our presented algorithm is based on the iterative blind 

deconvolution (IBD) method, which is famous for its 

computational simplicity [3]. The IBD method alternately 

estimates the image and PSF in each iteration, as shown in 

Fig. 1. It is first proposed by Ayers and Dainty and later 

serves as a flexible framework in which various non-blind 

image restoration methods and PSF estimation methods 

can be easily integrated [10]-[17].  

We employ the Richardson-Lucy (RL) algorithm and 

a constrained least square error (CLSE) method to restore 

the image and estimate the PSF respectively. The RL 

algorithm is formulated as  

( ) ( 1)

( 1)
*

( , )ˆ ˆ( , ) ( , ) ( , ) ( , )
ˆ ( , )

l l

l

g i j
f x y f x y d i j x y

g i j
,

(3) 

where
( 1)ˆ l

f ,
( )ˆ l

f  represent the l-1 and l-th estimation of 

the clear image respectively,
( 1)

ˆ
l

g the convolution 

of
( 1)ˆ l

f and d, and ( , )x y , ( , )i j the discrete pixel index 

[18], [19]. The RL algorithm is popular in astronomy and 

medical image restoration for its robustness in the 

presence of noise and it can also be used in PSF 

estimation, as many IBD algorithms do [14]-[16]. 

However, we choose a CLSE method to estimate the PSF. 

The reason is that CLSE can naturally take the PSF 

monotonicity as one of its constraints, whereas the RL 

algorithm cannot. The least square error (LSE) criterion is 

expressed as  

2

2min || ||
d

g Fd ,    (4) 

in which g, d are lexicographic forms of g, d respectively, 

and F stands for f in the form of convolution matrix [1]. 

Suppose a discrete PSF has s elements and they have been 

incrementally indexed according to their distance to the 

center, then the PSF monotonicity constraint can be easily 

expressed as  

(1) (2) ... ( )sd d d ,   (5) 

or in the matrix-vector form: 

Qd 0 ,     (6) 

where 

1 1

1 1

1 1 ( 1)s s

Q   (7) 

In the CLSE method we also used the nonnegativity and 

energy conservation constraints, respectively expressed as: 

d 0 ,     (8)

1[1,1, ...1]s d = 1 .    (9) 

Our algorithm (RL-CLSE) calls the Matlab routine 

deconvlucy to implement the RL algorithm and quadprog

to solve the constrained quadratic problem CLSE. The 

initial image for the RL iterations is set as the raw image g,

and the initial value of d for quadprog is set as 

1/s,1/s,...1/s
T

which guarantees the satisfaction of (6), (8) 

and (9). Besides, three parameters should be appointed 

before the blind deconvolution starts: the initial PSF ( 0d̂ ),

the iteration number for the IBD framework (Kmax) and 

the iteration number for the RL algorithm (Lmax).

3. RESULTS 

As an example, we deconvolved a microscopic image 

shown in Fig. 2(a). By experience we set 0d̂ a 7 7 matrix 

with each element being 1/49, 10Kmax and 10Lmax ,

and obtained Fig. 2(b). To make a comparison, we 

removed the monotonicity constraint (6) and obtained Fig. 

2(c). It is evident that with the PSF monotonicity 

constraint the deconvolution process improved the quality 

of the raw image significantly, while without the 

constraint the restored image had many artifacts and lost 

important details (such as the small granules).  

We also investigated the case in which the

monotonicity constraint was not strictly enforced. We 

modified (6) to  

Qd b ,     (10) 

where b is a relaxation vector controlling the strictness of 

the constraint. If b=0, the monotonicity constraint is 

strictly enforced; if b=1, (10) will be redundant in the  

Fig. 1. The IBD framework. 

Get k-th estimation ˆ
kd from g and ˆ

kf

Get k-th estimation ˆ
kf from g and 1

ˆ
kd

Set initial PSF 0d̂

k=k+1
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Fig. 2. (a) The raw image.  Courtesy of Leica Microsystems 

Ltd., Cambridge, UK.  (b)(d) Restored image and PSF with 

the monotonicity constraint. (c)(e) Restored image and PSF 

without the monotonicity constraint.

presence of (8) and (9). Note that the modification from (6) 

to (10) will not change the structure of the algorithm. The 

restoration quality is evaluated by the percentage mean 

square error (MSE) [3]: 
2

2

2

2

100%
ˆ|| ||

( )
|| ||

g ag
MSE g

g
,   (11) 

where 

-1
ˆ ˆˆ *Kmax Kmaxg f d ,    (12) 

( , )

2
( , )

ˆ( , ) ( , )

ˆ ( , )

x y

x y

g x y g x y

g x y
a .   (13) 

For the sake of simplicity, we set bb = 1 where b is a 

scalar ranging from 0 to 1. Fig. 3 shows some of the 

curves of MSE(g) against Kmax with different b. We 

found that with any Kmax>2, MSE(g) decreased 

monotonically with b, reaching its minimal at b=0. 

Moreover, the iterative process was generally more stable 

with b<1 than that with b=1, and the most stable one also 

occurred at b=0. Such results confirmed the validity of 

using the monotonicity as a PSF constraint in blind 

deconvolution. 
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Fig. 3. The curves of the restoration error against the iteration 

number with different b.

4. CONCLUSIONS 

The motivation of this paper is to improve blind 

deconvolution by using prior knowledge of the PSF. We 

considered the monotonicity a common property shared 

by many simplified but widely accepted PSF models, and 

utilized this property as a constraint in a novel algorithm 

RL-CLSE. Our experiment on a real microscopic image 

showed that such a PSF monotonicity constraint improved 

both the restoration quality and stability of blind 

deconvolution. We based the presented algorithm on the 

IBD framework, considering it the easiest way to apply 

the proposed constraint. In future work we will try the 

monotonicity constraint in more rigorous frameworks 

other than IBD, such as regularized least square error [20] 

and maximum likelihood [5].  
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