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ABSTRACT 

The previously proposed partition-based weighted sum 

(PWS) filters combine Vector Quantization (VQ) and 

linear finite impulse response (FIR) Wiener filter 

concepts.   By partitioning the observation space and 

applying a tuned Wiener filter to each partition, the PWS 

is spatially adaptive and has been shown to perform well 

in noise reduction applications.  In this paper, we propose 

the subspace PWS (SPWS) filter and evaluate the efficacy 

of the SPWS filter applied to the image deconvolution 

problem.   In the SPWS filter, we project the observation 

vectors into a subspace using principal component analysis 

(PCA) for partitioning.  This subspace projection can 

dramatically reduce the computational burden associated 

with the large window size PWS filters that are needed for 

effective image deconvolution.  In some cases, 

performance is also enhanced due to improved 

partitioning. 

1. INTRODUCTION 

One of the most commonly used approaches for image 

restoration with prior knowledge is Wiener filtering. The 

well-known Wiener filter is optimum, in a mean-squared 

error (MSE) sense, if the signal and noise are jointly 

Gaussian and stationary. It may, however, be suboptimal 

for a spatially-varying degradation function or with non-

stationary signals and noise. Barner, Sarhan, and Hardie, 

[1] proposed the partition-based weighted sum (PWS) 

filter, which combines Vector Quantization (VQ) [2] and 

Wiener filter concepts.  A blind deconvolution method 

using VQ partitioning, like the PWS filter was recently 

proposed by Nagasaki and Katsaggelos [3].  VQ has also 

been used in image superresolution [4] and other image 

restoration applications [5-6].   

The PWS filter uses a moving window operation.  The 

observation vector at each position in the image is 

quantized into one of the M partitions.  Associated with 

each partition is a finite impulse response (FIR) Wiener 

filter that is “tuned” for data falling into that partition. 

After an observation vector is classified, the corresponding 

Wiener filter is applied.  The Wiener filter can be 

considered a special case of the PWS filter with only one 

partition (M=1). Previous work has demonstrated the 

effectiveness of the PWS filter in an image de-noising 

applications using relatively small observation windows.  

However, the image deconvolution application may 

require significantly larger observation window sizes to 

achieve desired performance. This dramatically increases 

the computational cost of the VQ partitioning and VQ 

codebook generation to as point where it may become 

impractical. 

In this paper, we propose a subspace PWS (SPWS) 

filter and evaluate its efficacy in an image deconvolution 

application with prior knowledge of the degradation point 

spread function (PSF).  In the SPWS filter, we project the 

observation vectors into a subspace using principal 

component analysis (PCA).  Vector quantization (VQ) 

based on the Linde-Buzo-Grey (LBG) algorithm [2] is 

used in the subspace for partitioning.  This subspace 

projection can dramatically reduce the computational 

burden associated with the large window size PWS filters 

that may be needed for effective image deconvolution.  In 

some cases, performance is also enhanced due to improved 

partitioning. 

The remainder of this paper is organized as follows. 

The PWS and SPWS filters are defined in Section II. 
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Section III shows the experimental results comparing the 

SPWS with traditional Wiener filter deconvolution and the 

PWS.  An analysis of computational complexity is also 

provided.  Finally, conclusions are presented in Section 

IV.

2.  PARTITION WEIGHTED SUM 

DECONVOLUTION

A. PWS Filter 

From Barner, Sarhan and Hardie [1], the output of a PWS 

filter can be expressed as  

( ( ))( ( )) ( )T

PWS pF = x nx n w x n ,   (1)

where 

1 2
( ) [ ( ), ( ),..., ( )]T

Nx x x=x n n n n                     (2) 

contains the  N observation samples spanned by a moving 

window centered at 
1 2[ , ]n n=n  and 

,1 ,2 ,[ , ,..., ]T

i i i i N=w w w w  for 1,2,...i M=  are the filter 

weights for each of the M VQ partitions.  The encoder or 

partition function ( ) : {1,2,..., }Np R M⋅ �  generates the 

partition index and is given by 
2

( ( )) arg min ( ) i
i

p = −x n x n z , (3)

where iz  is a codeword from the codebook 

{ , 1,..., }iC i M= =z .  As in [1], we use the LBG algorithm to 

generate the codebook from a training image.     

The weight vectors for each corresponding partition are 

generally estimated with the aid of training data. It was 

shown in [1] that the optimum weights, in an MSE sense, 

are found by using the Wiener weights for each partition.  

This is given by 
* 1

i i i

−=w R p ,    (4)

where 1,2,...i M= , [ ( ) ( ) | ( ) ]T

i iE= ∈ ΩR x n x n x n  is the auto 

correlation matrix and [ ( ) ( ) | ( ) ]i iE d= ∈Ωp n x n x n  is the 

cross correlation vector for the i’th partition, iΩ .

B.  Subspace PWS Filter 

To reduce the computational complexity of partitioning 

the NR  observation space, we propose projecting the 

observation vectors into an KR  subspace (K<N) through a 

linear transformation 

( ) ( )=x n Ax n� ,    (5) 

where A is a K N×  matrix.  Thus the output of SPWS 

filter can be rewritten as  

( ( ))( ( )) ( )T

SPWS pF = x nx n w x n
� �

, (6)

where ( ) : {1,2,..., }Kp R M⋅� � .  We now consider and 

describe three choices for A.

The first case we consider is where A is based on 

PCA using Karhunen-Loeve (KL) transform. The PCA 

algorithm, or KL transform, is an elegant and efficient way 

to reduce data dimensionality.   In this case, the rows of A

are made up of the K eigen vectors with the largest eigen 

values of the covariance matrix for ( )x n .  The bulk of the 

variation in the data can often be captured in a subspace 

using this method. 

A simpler method selects K observation sample 

locations to form the subspace.  In that case, A contains 

one one in each row located in a unique column (the other 

entries are zero). This serves as a simple selection 

function.   In Section III, we consider the case where the 

most central K samples are selected.  Finally, we consider 

combining the PCA and center selection method.  In this 

case, PCA S=A A A  where SA  is an L N× matrix that 

selects the L most central samples and PCAA  is a K L×
PCA subspace transformation matrix where K L N< < .

The emphasis on the center comes from the observation 

that the deconvolution partition filters tend to have the 

largest magnitude impulse response values at the center.

3. EXPERIMENTAL RESULTS 

In this section, the results of SPWS applied to motion-

blurred images are compared with FIR Wiener filter and 

PWS filter results to evaluate its performance.  Separate 

600 400× training and testing images are obtained from 

different parts of a single high-resolution aerial image.  

The images are consider ideal and are artificially degraded 

to allow for quantitative error analysis.   The training 

image is used to generate the VQ codebook and to 

determine the weights of the SPWS filters for each 

partition. The other image is used for testing.  

The image results are shown in Fig. 1 (center portions 

magnified).  Figure 1(a) shows the true test image, Fig. 

1(b) shows the motion blurred image with Gaussian noise 

(standard deviation is 1% of the dynamic range, 

MSE=36.68), Fig. 1(c) shows the Wiener filter output 

(MSE=20.41).  The PWS output is shown in Fig. 1(d) 

(MSE=20.03).  The SPWS filter outputs using the PCA 

method (MSE=20.04) and center PCA method 

(MSE=19.86) are shown in Figs. 1(e) and 1(f), 

respectively.   Note that in all of these results 1 61N = × ,

50M = , 5K = , and 31L = .  The SPWS and PWS 

images appear to be very similar, but the computational 

complexity of the SPWS filters is significantly lower, 

making it an attractive choice.

Quantitative error analysis is shown in Fig. 2.  In 

particular, MSE is plotted as a function of the number of 

partitions, M, for the various filters.  Note that for M=1,

the PWS and SPWS filters are equivalent to the Wiener 

filter. The results show improvement with an increase in  
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(a)

(b) 

(c)

Figure 1: (a) True test image, (b) motion blurred image with 

noise, (c) Wiener filter, (d) PWS, (e) SPWS filter using the 

PCA method, (f) SPWS filter using center PCA method. 

(d) 

(e)

(f) 
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Figure 2:  MSE for the various filters applied to a motion 

blurred image with Gaussian noise. 
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Figure 3: Floating point operation count for the various filters. 
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Figure 4: Filter implementation time.

the number of VQ partitions.  The SPWS (Center and 

Center-PCA) had lower MSE than the PWS filter.   

By reducing the dimensionality of the observation 

space, the computational demands of the VQ partitioning 

are greatly reduced.  This dramatically speeds up training 

and significantly speeds up filtering.  To see this, we 

estimated the number of floating point operations (flops) 

per pixel required to implement the various filters.  The 

results for 61N = , 50M = , 5K = , and 31L =  are 

shown in Fig. 3.  For small values of M, the PCA methods 

actually increase the computational complexity because of 

the matrix multiplication in (5).  However, this quickly 

“pays” for itself and we see a dramatic reduction in flops 

for larger values of M.  The SPWS (Center) method has 

the lowest computational complexity. 

In our MATLAB implementation on a Pentium IV 2.4 

GHz PC, the total computation time including training and 

testing for the PWS was 826 minutes (M=50, N=61).  The 

SPWS (Center) method took only 34.8 minutes – a 95.7% 

improvement.  The PCA and center PCA methods required 

a similar time.  Figure 4 shows the filtering times. 

4. CONCLUSIONS 

We have proposed a subspace PWS filter for image 

deconvolution that dramatically reduces the computational 

complexity of the PWS filter and allows for large window 

sizes.  We demonstrate the efficacy of the SPWS filter in 

an image deconvolution application.  The performance of 

the SPWS and PWS filters depends very much on the VQ 

codebook that defines the observation space partitioning.  

We have observed that the LBG algorithm appears to 

produce superior results in this application in a lower 

dimensional space.  Thus, in addition to reducing the 

computational complexity, the subspace projection method 

improves the PWS filter performance in some cases. 
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