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ABSTRACT

Confocal laser scanning microscopy is a powerful and
increasingly popular technique for 3D imaging of biologi-
cal specimens. However the acquired images are degraded
by blur from out-of-focus light and Poisson noise due to
photon-limited detection. Several deconvolution and/or de-
noising methods have been proposed to reduce these degra-
dations.

Here we propose a wavelet denoising method, which
turns out to be very effective for three-dimensional confo-
cal images. To obtain a translation and rotation invariant
algorithm, we have developped the 3D Complex Wavelet
Transform introduced by N. Kingsbury. These wavelets al-
low moreover a better directional selectivity of the wavelet
coefficients. We show on simulated and real biological data
the good performances of this algorithm.

1. INTRODUCTION

The confocal laser scanning microscope (CLSM) is an opti-
cal fluorescence microscope associated to a laser that scans
the specimen in 3D and uses a pinhole to reject most out-
of-focus light. The quality of confocal microscopy images
suffers from two basic physical limitations. First, out-of-
focus blur due to the diffraction-limited nature of optical
microscopy remains substantial, even though it is reduced
compared to widefield microscopy. Second, the confocal
pinhole drastically reduces the amount of light detected by
the photomultiplier, leading to Poisson noise. The images
produced by CLSM can therefore benefit from postprocess-
ing by deconvolutionmethods designed to reduce blur and/or
noise. Image deconvolution methods can be classified into
two families, whether they are multiresolution or not. In
confocal microscopy, non multiresolution methods include
the iterative methods such as Tikhonov-Miller inverse filter
[1], the Carrington [1], Richardson-Lucy (RL) algorithms
[2, 3], Conchello et al. [4], van Kempen et al. [5] and Dey
et al. [6]. On the other hand, the multiresolution methods
consist of representing an image at various levels of reso-
lution, and restoring separately the different scales. Boutet
de Monvel et al. [7] have proposed a real wavelet basis for

denoising and a non-regularized Richardson-Lucy method
for deconvolution. In [8], Willett et al. use a multiscale ap-
proach based on platelets to denoise 2D images in the pres-
ence of a Poisson noise. Here we concentrate on denoising
algorithms and we will demonstrate that the 3D Complex
Wavelet Transform (CWT) is well adapted to the confocal
biological imagery.

We first propose a denoising algorithm based on com-
plex wavelet thresholding by using the 3D CWT which pro-
vides invariance and directional properties. We present ex-
perimental results on synthetic data (section 3.1), showing
that CWT results outperform results using standard real wa-
velet transform. We then show experimental results on real
data (section 3.2). Finally, we conclude in section 4 and
give some perspectives for future research work.

2. THE DENOISING ALGORITHM

2.1. 3D Complex Wavelet Transform

N. Kingsbury [9] introduced the Complex Wavelet Trans-
form (CWT) a few years ago. Here we have developed a
3-D CWT, following the original work of N. Kingsbury in
2D and 3D. In the transform defined by N. Kingsbury, the
first level of a real biorthogonal transform is undecimated,
defining a perfect invariance at level 1. The coefficients are
re-ordered into 8 interleaved images by using their parity.
This defines the 8 trees T = A, B, C, D, E, F, G, H which
are redundant. For j > 1, each tree is processed separately
with a combination of odd, ho and go, and even, he and ge,
filters depending on each tree. The subbands are indexed by
k. Finally, the detail subbands dj k of the parallel trees are
combined to form 4 complex subbands.

Thresholding the magnitudes |z±| without modifying
the phase enables to define a nearly shift invariant filtering
method.

The details of the 7 subbands hgh, ghh, hhg, ggh, hgg,
ghg and ggg give 28 complex subbands, instead of 7 in the
real case. This directional separation is made possible by
using filters that have an asymmetric response. Thus, nega-
tive and positive frequencies can be separed which provides
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a strong orientation of the impulse responses and therefore a
high directional selectivity between the different subbands.

2.2. The proposed algorithm

We deal with the case of denoising non-blurred confocal
images contaminated by a Poison distribution. Here we
suppose that the number of detected photons are important
enough to be approximated by a Gaussian noise. The degra-
dation model is represented by the equation:

Y = X + n (1)

where Y is the observed data, X is the original image and n
is the additive white Gaussian noise with standard deviation
σ.

Authors like e.g. Donoho et al. [10], Kalifa and Mal-
lat [11], have proposed to denoise the image using a real
wavelet basis. This is achieved by cancelling the coeffi-
cients below a given threshold. We have employed the three
thresholding functions (soft, hard and Oracle) defined in
[10], using a threshold Tk = 1.6σk as proposed by Kalifa
in [11]. However, the real wavelet transform is not shift in-
variant, which produces artefacts. Also, it is not rotation
invariant because of its separability. That is why we have
applied the CWT to image denoising which is only 2d re-
dundant where d is the dimension of the space (d = 3 in 3D
applications).

The proposed denoising algorithm consists of the fol-
lowing steps:

• Complex Wavelet Transform (3D-CWT) of Y
• Conversion from octet-tree to complex transform
• Estimation of σk , numerically computed from σ

(known for synthetic images and manually
estimated, from different homogeneous areas,
for real biological images)

• Soft-thresholding of noisy coefficients y for each
subband k

• Conversion from complex transform to octet-tree
• Inverse CWT, which gives the estimate X̂ .

3. RESULTS

3.1. Results on simulated images

We have compared the proposed denoising method (using
the CWT) with the classical wavelet denoising method (us-
ing the real wavelet) on 3D simulated data. To quantify
the quality of the techniques we have used the difference
of Signal to Noise Ratio (∆SNR) between the SNR of the
denoised image and the degraded image.

Fig. 1 (a) represents the original image, (b) the degraded
one by a Gaussian noise with variance σ2 = 900. We have
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Fig. 1. Denoising of synthetic 128x128x64 test image with
1 pixel for 250nm in XY, and 1 pixel for 600nm for XZ. One
cut of the 3D image is shown. First row: (a) original and (b)
noisy image; second row: (c) image denoised by CWT with
∆SNR = 15.36 dB and (d) image denoised by real wavelet
with ∆SNR = 13.49 dB.

realized three scales of the wavelet decomposition and used
the soft-thresholding function. The degraded image before
denoising have a SNR = 2.87 dB. The result obtained by
the CWT denoised algorithm is shown in (c) with ∆SNR =
15.36 dB and in (d) the denoised image by applying the
real wavelet with ∆SNR = 13.49 dB. We observe that
image (d) shows more intensity oscillations at the edges of
the object. Moreover, we can notice that image (c) better
preserves the borders.

Fig. 2 (a) represents a textured image with a fine struc-
ture, (b) the degraded image by a Gaussian noise with vari-

II - 622

➡ ➡



ance σ2 = 900. We have chosen as previously, three scales
of the wavelet decomposition and used the soft- threshold-
ing function. The degraded image before denoising have a
SNR = −1.20 dB. The result obtained by the CWT de-
noising algorithm is shown in (c) with ∆SNR = 13.12 dB
and in (d) appears the denoised image by applying the real
wavelet with ∆SNR = 11.45 dB.
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Fig. 2. Denoising of synthetic 128x128x32 test image with
1 pixel for 250nm in XY, and 1 pixel for 600nm for XZ. One
cut of the 3D image is shown. First row: (a) original and (b)
noisy image; second row: (c) image denoised by CWT with
∆SNR = 14.32 dB and (d) image denoised by real wavelet
transform with ∆SNR = 12.65 dB.

Fig. 3 shows the results of a set of denoising experi-
ments performed on the test image (see Fig. 1 (a)) degraded
by various levels of noise. For each level of noise, the gain
in SNR was measured.

In conclusion, complex wavelet denoising leads qualita-
tively to better results than real wavelet denoising.

We remark that, for each thresholding function, the CWT
always overcomes the real wavelet transform from 2 dB. In
all our tests the soft-thresholding function gives the best re-

Fig. 3. Denoising of image Fig. 1 (a) by CWT and real
wavelet transform for different thresholding functions (soft,
hard and Oracle) and different noise variances.

sults, followed by the Oracle thresholding, then by the hard-
thresholding.

3.2. Results on real biological data

In this section, we present experimental results of the pro-
posed algorithm. Fig. 4 (a) shows one cut extracted from a
3D image, imaging a Drosophila embryo realizing the dor-
sal closing. Fig. 4 (b) is the denoised image by the proposed
algorithm. We remark that the result is satisfactory, the bor-
ders of the structures are well preserved while the noise has
been removed.

(a) (b)

Fig. 4. A Drosophila embryo realizing the dorsal closing.
One view extracted from a 3D image (256x256x30). Ac-
quisition performed with a Zeiss Axiovert 200 with an ob-
jective of 40x, NA = 1.3. (a) raw image; (b) denoised image.
( c© UMR 6543 CNRS/Laboratoire J.-A. Dieudonné).

Fig. 5 presents the results of the proposed denoising al-
gorithm for a cluster of 4 fluorescent beads of 6 µm acquired
with a Zeiss Axiovert 200M confocal microscope. Here we
observe the good results, too.
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Fig. 5. A cluster of 4 fluorescent beads of 6 µm. One view
extracted from a 3D image. ( c© Quantative Image Analy-
sis Group, CNRS URA 1947, Institut Pasteur). The stack
is 256x256x128 with voxels of size 89x89x230 nm. Ac-
quisition performed with a Zeiss Axiovert 200M confocal
microscope, with an internal magnification (given by the
manufacturer) of 3.3x. The objective is a 63x/1.4 NA plan
Apochromat. (a) raw image; (b) denoised image.

4. CONCLUSION AND PERPECTIVES

In this paper, we have presented a denoising approach for
confocal microscopy, based on the complex wavelet trans-
form. Noise is efficiently removed from the images, and
the objets are well preserved as shown on synthetic and real
biological data.

In a near future, the proposed denoising algorithm will
be integrated into a whole package comprising also a de-
convolution step. This is the object of our current research
and will be presented in another paper.
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