
DYNAMIC PROGRAMMING BASED MULTICHANNEL IMAGE RESTORATION 

Mrityunjay Kumar, Pradeep Ramuhalli

Nondestructive Evaluation Laboratory, 

Department of Electrical and Computer Engineering 

Michigan State University, East Lansing, MI 48824, USA 

{kumarmri, rpradeep}@egr.msu.edu

ABSTRACT

Blind restoration of single-input /multiple-output images finds 

application in diverse fields including multi-sensor remote 

sensing, non-destructive testing and medical imaging. In this 

paper an iterative forward propagation dynamic programming 

based approach is proposed for restoring images in a single-

input/multiple-output multichannel framework. This algorithm 

exploits cross channel correlation for restoring images, leading 

to improved performance as compared to single channel 

restoration. The algorithm is applied to both synthetic as well as 

experimental data and initial results indicate the feasibility of 

the proposed algorithm. 

1. INTRODUCTION 

In many applications of multi-sensor imaging, such as remote 

sensing, non-destructive testing, medical imaging etc., the 

measurements obtained from n sensors yxcyxc n ,,,,1  may 

be modeled as the outputs of n linear space-invariant systems 

(Figure 1) [1]-[3]. If 1 , , , ,nh x y h x y  are the impulse 

responses (or point spread functions, PSF) of these systems, the 

measurement model is 

, , , ,  1,2,..,i ic x y h x y f x y i N   (1)  

where f(x,y) is the source object. Since the same source is 

imaged using different sensors [4], the measured images contain 

redundant as well as complementary information. Often, 

measurements in individual channels are distorted versions of 

the original due to various types of channel/sensor distortions 

and the goal of multichannel image restoration is to obtain the 

source from the multiple observations.  

Conventionally, this can be done in a single channel framework 

[2] where only one channel is considered at a time for 

restoration and there is no information sharing among the 

channels. However, the quality of the restored image can be 

improved drastically by taking into account cross channel 

correlation during restoration. While Wiener filter-based 

approaches [5] are typically used when the channel parameters 

are known, in most practical applications the channel 

parameters are unknown and the source image needs to be 

estimated based on only the observed images. This is known as 

multichannel blind deconvolution [6]. In the recent past, 

probabilistic approaches [7] and total variation [8] based 

approaches have been proposed for multichannel image 

restoration. However, these approaches tend to be 

computationally complex. 

An alternative approach is proposed in this paper and is based 

on the use of dynamic programming methods [9]. An n -

channel blind deconvolution problem can be viewed as an 

1n -dimensional optimization problem where channel 

parameters as well as the source image are estimated jointly in 

an optimal manner. However, this approach is challenging 

because, in general, n-dimensional optimization is 

computationally expensive.  The problem is better solved by the 

use of dynamic programming based approaches as dynamic 

programming reduces n -dimensional optimization problems to 

n  1-dimensional optimization problems. At each stage, the 

Richardson-Lucy blind deconvolution algorithm [10]-[12] is 

used in thus study to estimate parameters of interest. 

The rest of the paper is organized as follows. Section 2 

describes the proposed algorithm based on the use of forward 

propagation dynamic programming. Section 3 presents the 

results of performance of the algorithm of several databases and 

finally, Section 4 concludes the paper.   
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Figure 1. Multichannel measurement model. 

2. PROPOSED ALGORITHM 

Consider the measurement model in (1), and depicted in Figure 

1. Assuming that yxf , , and , ,  1,2,...,ih x y i N  are the 

unknown variables,  the problem of estimating them can be 

expressed in terms of the simultaneous minimization of cost 

functions ,  1,2,...,iP i N  defined as
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, , , ,  1i i iP c x y h x y f x y i N  (2) 

subject to the constraints 

,

, 1 

, 0, 1,2,..,  ,

i

x y

i

h x y i

h x y i N x y

. (3) 

This problem can be solved using an n-step forward propagation 

dynamic programming algorithm as shown in Figure 2 where 

nSS1  are state variables, nRR1  are return functions, 

nn hxhx 11  are control variables, ncc1  are constants 

(observations) and ntt1  are transform functions that estimate 

the output variables for the different stages respectively. The 

overall cost function, nRRP 1 , for this model is expressed as 

2

1

1 1

n n

n i i i

i i

P R R R c h f  (4) 

Clearly, this cost function is monotonic and separable, and 

therefore, an optimal solution is guranteed if the optimal value 

of 1S  is known [9]. However, in general, this is unknown, and 

an iterative approach is necessary for optimization. Thus, the 

problem can be restated as  

1
,

1
i

n
f h

i n

Min P R R  (5) 

subject to the constraints 

nixSrRandxStS iiiiiiii 1,,1  (6) 

,

, 1,  , 0, , ,i i

x y

h x y h x y i x y  (7) 

where the values of the state variables are computed iteratively. 

The complete flow chart for the algorithm is shown in Figure 3. 

At the 
thk  iteration, the control variable for stage 1 is 

computed using 1S  estimated at the 
th

k 1  iteration. The 

output state variable of stage i acts as the input state variable for 

stage i+1. At each stage, the Richardon-Lucy blind 

deconvolution algorithm [10]-[12] is used to compute the state 

and control variables. The algorithm terminates when the 

convergence criterion in (8) is satisfied. Here,   is a pre-

defined tolerance value. 
2

1kk ff  (8) 
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Figure 2. n-stage forward propagation dynamic 

programming model. 

3. RESULTS 

The proposed algorithm was tested using multiple databases. 

The first data set contained benchmark images that were 

artificially blurred using two known filters (two-channel image 

restoration). An example is the “cameraman” image in Figure 4 

that was blurred using two filters – a low-pass filter 1h and a 

high pass filter 2h , where 1h  is a 7x7 averaging filter with 

pixel value 1 /500 for all the pixels and 2h  is a high pass filter 

where 2h  =  [-1,-1,-1;-1,12.5,-1;-1,-1,-1]/9. The proposed 

algorithm was used to reconstruct this image and results are 

presented in Figure 4. Figure 4(a) shows the source image while 

Figures 4(b) and 4(c) are the outputs of channel 1 and 2 

respectively. Multichannel restoration results (Figure 4(f)) are 

compared with single channel restoration results (Figures 4(d) 

and 4(e)). The PSF support for single channel restoration is the 

same as the support of filters used for blurring. For multichannel 

restoration, two sets of results were computed: one with PSFs 

for both channels using the same support and the second where 

different support sizes were assumed. While the results of 

multichannel restoration are visually pleasing, a quality metric 

is necessary to objectively compare the two sets of results. The 

image quality index 0Q  proposed by Wang and Bovik [13] is 

one of the metrics used to compare the results of different 

algorithms in this study. This metric compares the restored 

image with the original image, and a value of 10Q  indicates 

that the two images being compared are identical. The greater 

the deviation of 0Q  from 1, the greater the discrepancy 

between the two images. Note that this metric can only be 

computed when the original image is available! 
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Figure 3.  Flow chart of the proposed algorithm 

For the results presented in Figure 4, 0Q  for single channel 

restoration are 0.0101 (Figure 4(d)) and 0.1708 (Figure 4(e)) 

respectively while 0Q  for the proposed algorithm is 0.4041 

(when assuming same size PSFs) and 0.4268 for different size 

PSFs. It is evident that the results have improved significantly 

by the use of the multichannel method. Similar results for two 

other benchmark images are summarized in Table 1. The two 
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channels for the “Lena” image were obtained by applying a 

motion blur and a Gaussian filter, while two different kinds of 

motion blur were used to distort the “Text” image. 

Results of applying the algorithm in the presence of additive 

noise indicate that it is robust to noise. Specifically, 0Q  for low 

SNR (0 dB – 10 dB) for the “cameraman” image were between 

0.044 and 0.2174 respectively (same size PSF; 0.1403 and 

0.2352 for different PSF sizes), indicating that the reconstructed 

image has sufficient information for subsequent processing. 

Similar results were observed with other benchmark images.

The second database consists of measurements obtained by the 

nondestructive evaluation of Inconel-600 tubing in steam 

generators in nuclear power plants. Eddy current techniques 

[14] are used for the inspection of such tubing to detect the 

presence of cracks. The coil impedance changes in the 

proximity of flaws, and this fact is used to distinguish regions 

with flaws. However, eddy current probes tend to have a 

blurring effect on the true flaw image (Figure 5(a) and 5(b)) due 

to the fact that the probes are not point probes. Typically, 

inspection is performed using multiple excitation frequencies, 

and the measurement (including the blurring effect) can be 

modeled using a multichannel model similar to that presented in 

Figure 1.

Determining true flaw dimensions is critical to structural 

integrity studies, and therefore, the blurring effect of probes 

must be removed for accurate determination of flaw surface 

dimensions. Because multiple measurements are carried out at 

multiple excitation frequencies, multichannel restoration 

techniques can be used for determining the true flaw 

dimensions. An example of measurements for a rectangular-

shaped notch that is 100% deep (relative to the tube wall 

thickness) and 0.25” long is shown in Figures 5(a) and 5(b). 

Single channel reconstruction results and 2-channel 

reconstruction results are presented in Figures 5(c), 5(d) and 

5(e) respectively. 0Q  values for these sets of results cannot be 

computed, as the true flaw images are not available. However, 

the length of the flaw is the quantity of interest in this 

application, and the recovered length of 0.267” from the 

multichannel algorithm is close to the actual length. This 

contrasts with the length estimated from the original 

measurement (0.344”). Note that single channel reconstruction 

indicates the presence of multiple flaws, and therefore does not 

allow the calculation of a length. 

A summary of results for additional flaw signals is presented in 

Table 1. These results, in addition to results on other images, are 

also available online at 

http://www.msu.edu/user/rpradeep/Publications/Conferences/IC

ASSP2005/Resuls.html. The results, along with the quality 

index and visual interpretation, underscore that multichannel 

reconstruction algorithms are necessary for accurate recovery of 

the original image, and that the proposed algorithm is capable of 

accurately recovering the original image from distorted 

multichannel measurements.

4. CONCLUSIONS AND FUTURE WORK 

A multichannel blind deconvolution algorithm based on the use 

of dynamic programming is proposed in this paper. The 

algorithm uses the Richardson-Lucy blind deconvolution 

algorithm in combination with forward propagation dynamic 

programming to iteratively estimate the original image from 

multichannel observations. Initial results indicate that the 

proposed algorithm provides superior performance when 

compared to single channel blind deconvolution algorithms. The 

results also indicate that the algorithm is robust to additive 

noise.
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Figure 4. (a): Original Image, (b): Output of channel 1, (c) Output of channel 2, (d): Restored image using channel 1 only, (e): Restored

image using channel 2 only, and (f) Output of the proposed algorithm

(c) (d) (e)

(a) (b)

Figure 5. 100% axial EDM notch (a) Channel 1 C-scan image (b) Channel 2 C-scan image at (c) Restored image from channel 1 only 

(d) Restored image from channel 2 only (e) Multichannel image restoration. 

Table 1. Performance summary of the proposed algorithm on several different data sets. 

Benchmark Images 

  Quality Index 

Same size PSF Different size PSF 

 Images 
Channel 1 

Reconstruction

Channel 2 

Reconstruction PSF Sizes 
Multichannel 

Reconstruction
PSF sizes 

Multichannel 

Reconstruction

1 Cameraman 0.0101 0.1708 3x3 and 3x3 0.4041 5x7 and 3x3 0.4268 

2 Lena 0.4211 0.3920 9x9 and 9x9 0.4885 7x7 and 7x15 0.6029 

3 Text 0.8701 0.8459 5x5 and 5x5 0.7258 
5x11 and 

7x11
0.8108

       

Eddy Current Inspection Data 

EDM Notch 

Type 

Flaw Length 

Estimated from 

measurement 

Flaw Length (True Flaw Length) 

1 100% Axial  0.344” 0.2670” (0.250”) 

2 100% Circ  0.330” 0.2370” (0.250”) 

3 20% Axial  0.2670” (0.250”) 0.2670” (0.250”) 

4 59% Circ  0.2370” (0.250”) 
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