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ABSTRACT

Wavelet-domain hidden Markov models (HMM’s) have 

been widely applied to image processing, e.g., image 

restoration. The models provide great promise of detecting 

image singularity structures with some hidden states. 

However, these hidden states are rather difficult to be 

estimated, especially under the influence of the 

multiplicative speckle noise in SAR image, no efficient 

estimation method is developed yet. By using the principle 

of turbo iterative decoding, we propose a new turbo 

iterative method to estimate the hidden states of the 

wavelet-domain HMM’s for SAR image. In our method, 

hidden states are estimated alternatively in two orthogonal 

sub-spaces with a soft estimation scheme, and the 

posterior probability is exchanged between the two sub-

spaces. The experimental results of the proposed method 

illustrate rather an impressive performance.

1. INTRODUCTION

Real-world images are well characterized by their 

singularity structures, such as edges and ridges [1]. These 

features are often particularly meaningful for many 

applications involving image processing. Wavelet analysis 

has been proved to be a powerful tool for detecting the 

singularity structures of image, and also been successfully 

applied to a variety of optical image processing. However, 

the wavelet-based detection of the singularity structures in 

SAR image becomes rather difficult because of the effect 

of the multiplicative speckle noise. 

In fact, most of the early wavelet-based detection 

methods implicitly treat each wavelet coefficient as 

though it were independent of all others, which is 

unrealistic for many real-world signals. S.Crouse et al [2] 

developed new wavelet-domain HMM’s to match the non-

Gaussian statistics of wavelet coefficients as well as the 

statistical dependencies between them. The models have 

also been applied to the despeckling of SAR image in [3], 

and in that study, a binary hidden state is defined to 

capture the insignificant or significant coefficient property. 

The state can take on the value 0 (insignificant coefficient) 

or 1 (significant coefficient). The former corresponds to 

those homogeneous areas and the latter to those occasional 

transitions such as edges and other heterogeneity 

structures. In [3], the estimation results of hidden state 

show a great potential of the models for detecting the 

singularity structures in speckled image. But, with the 

effect of the multiplicative speckle noise, an efficient and 

practical estimation method is hard to be devised yet. 

In another domain, turbo codes proposed by 

C.Berrou et al in [4] are among the most promising 

developments in the field of coding theory in recent years, 

and the turbo iterative principle has been introduced into 

the speckled image processing by Sun and Maître et al [5]. 

Just like the decoding of binary codes, the estimation of 

hidden state is essentially to compute the posterior 

probability of a binary random variable given the 

observation. Consequently, with the same essence, the 

turbo iterative principle can be exploited to estimate the 

hidden state under the influence of the multiplicative 

speckle noise. 

By using the turbo iterative principle, the objective of 

this paper is to develop a novel turbo iterative method to 

estimate the hidden state of the wavelet-domain HMM’s 

for SAR images. In section II, we review the wavelet-

domain HMM’s for the further development. In Section 

III, we present a complete turbo iterative scheme to 

estimate hidden state. The proposed method is tested on 

the synthetic speckled images as well as the real SAR 

image in Section IV. Finally, we conclude the paper. 

2. REVIEW OF WAVELET-DOMAIN HMM’S 

Besides the properties of locality, multiresolution and 

compression, wavelet transform also has the properties of 

clustering and persistence [2], and they imply that a 

residual dependency structure always remains between the 

wavelet coefficients. 

The wavelet-domain HMM’s can be used to describe 

this residual dependency structure by assigning a hidden 

state for each wavelet coefficient. Generally, the wavelet-

domain HMM’s consist of three sub-models: independent 

mixture (IM) model, hidden Markov chain (HMC) model 

and hidden Markov tree (HMT) model [2]. The IM model 

describes the marginal statistics of coefficients in the case 

of ignoring any intercoefficient dependencies. The HMC 

and HMT model characterize the intra- and interscale 

dependencies between wavelet coefficients respectively. 
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As for SAR images, the interscale dependencies become

very weak owing to the effect of speckle noise. Thus, we 

can only consider the first two sub-models in this case [3].

2.1. IM sub-model 

The distribution of the noise-free wavelet coefficients

in each subband is usually sharply peaked at zero and

heavy tailed [3,6]. For this special statistics, the mixture of

two normals is often considered as a simple yet effective

choice of the marginal prior of an individual coefficient

[6]. In this case, we define a binary hidden state si for each 

coefficient wi and si can take on the value 0 or 1

(representing significant or insignificant coefficient). The 

marginal probability density function (pdf) of wi can be 

written as follow:
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noisy coefficients with the EM algorithm described in [3].

2.2. HMC sub-model 

To model the intrascale spatial dependence between

the wavelet coefficients in each individual subband, we 

introduce an Markov random field (MRF) into hidden

state. A two-state Potts model with a second-order 

neighborhood system is used here, and moreover, only

single-site and pair-site cliques are considered. Under 

such an assumption, the MRF prior of hidden state

configuration S can be defined as a Gibbs random field:
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where Z is a normalizing constant; is the parameter that

controls the local smoothness;  is the neighborhood of

pixel i;  is the discrete delta function.
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In terms of the Hammersley-Clifford theorem [7], the 

conditional pdf can be derived as:
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Taking (3)~(5) into (6), we can get the following form:
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3. TURBO ITERATIVE ESTIMATION OF HIDDEN 

STATE

The optimal estimation of a binary hidden state, like

the turbo decoding, is to seek the posterior probability of a 

binary random variable given observation. As for Turbo 

codes, there are two essential contributing factors to

explain their success [5]: (I) the presence of the pseudo-

random interleavers between the two component codes

makes them uncorrelated; (II) the two independent codes

work as a loopy Bayesian belief network with exchanging

extrinsic information.

Accordingly, the turbo iterative estimation of hidden

state should obey the following principles: (I) hidden state

should be estimated alternatively in two orthogonal sub-

spaces; (II) the soft estimation that offers a scheme of soft-

input and soft-output, like the soft decoding in Turbo

codes, should be adopted in both of two sub-spaces; (III) 

the appropriate information should be exchanged between

the two estimated results. The framework of our method is

shown in Fig.1, where the observed amplitude image A is 

the input and the posterior probability of hidden state is

the output.

3.1. Pre-transform

The multiplicative model holds for an amplitude SAR

image, which expresses the observed amplitude A as the 

product of the scatterer amplitude R and the speckle noise 

amplitude U [3]:
(8)A R U=

In theory, R is statistically independent of U, which offers 

the turbo iterative estimation method two orthogonal sub-

spaces: signal sub-space R and noise sub-space U.

A logarithm transform is usually applied to converting

the multiplicative model into an additive model before the

stationary wavelet transform (3-order B-spline wavelet

kernel is used in this study). Here, the logarithm transform

and the wavelet transform are together taken as the pre-

transform. Since the interscale dependence can be ignored,

we only consider the second level in the signal sub-space 

and the first level in the noise sub-space. 

3.2. Soft estimation of hidden state 

The soft estimation of hidden state is essentially to

compute its posterior probability in terms of its prior ( )ip s ,

the observation data and the estimated

variances , .
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The iterated conditional modes (ICM) algorithm is

used to maximize the posterior probability of si, and the

convergence rate and final state of this optimization

method are strongly dependent on the initial condition. 

Using the MAP criterion based on the marginal prior in

the IM model, a more reasonable initial configuration of si

is given with the following thresholding operation [3]:
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With the initial condition (9), the posterior probability

of si can be computed based on the HMC sub-model:
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with (2) and (7), the logarithm posterior probability of

hidden state can be written as follow:
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We define the normalized posterior probability:
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3.3. Information exchange 

The acquirement of the prior p(si) is very crucial for 

computing the posterior probability of si. In general, p(si)

can be initialized by the EM algorithm at the first iteration

in the sub-space R. Then, in the later iterations, the prior

p(si) in one sub-space can be updated by the last posterior 

in the other sub-space, which is the procedure of 

information exchange, illustrated as Fig.1.

In the sub-space R where the signal is dominant, the

configuration of the significant coefficients with 1-valued

state represents the singularity structures since the

coefficients containing primarily noise have become very

weak at the second level, illustrated in Fig.2 (a); on the 

contrary, in the sub-space U where the noise is dominant,

it’s the configuration of the insignificant coefficients with

0-valued state that represents the singularity structures

since the coefficients with the weak textural signal are 

often very small comparing with the strong noise at the

first level, illustrated in Fig.2(b). Consequently, in the

sub-space R, the prior p(si=1) should be updated by

(the last posterior in the sub-spaceU ),

while in the sub-space U, the prior p(s

( )
ˆ( 0 | ,i U ip s w S=

i=0) should be 

updated by (the last posterior in the sub-

space R).

( )
ˆ( 1| ,i Rip s w S=

3.4.The transform between two orthogonal sub-spaces 

According to the multiplicative model as (8), one

sub-space can be transformed into the other sub-space 

through a ratio operation as follow:
A

U
R

=
(14)

In order to perform the transform between these two sub-

spaces, it’s necessary in each iteration to estimate the

restored image R̂ in terms of the observation amplitude A

and the posterior probability of hidden state si by using an 

optimum filter.

In the classic Lee or Kuan filter, the estimated result

is in nature the weighted average of the local mean and the 

individual pixel value, and the weighted factor depends on

the heterogeneity degree of local texture. In fact, the

posterior probability of hidden state is more reasonable to

be used to describe the heterogeneity of local texture than

the normalized variance used in the classic filters. Now,

we develop a new weighted filter by using this posterior

probability as the weighted factor k:
ˆ (1 )AR A k A k= + (15)

where A and A denote the observation amplitude and the

local mean, respectively, and in the sub-space R, the 

weighted factor , while in the sub-

space U, the weighted factor .
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The posterior probabilities of hidden state in the two

orthogonal sub-spaces converge very rapidly. In general, 

the posterior  and  are 

very close to each other after 3 or 4 iterations. At this time,

according to the convergent posterior probabilities, we can 

make a hard decision of hidden state to obtain its optimal

estimation, that is, to say s

( )
ˆ( 1| ,i Rip s w S= ( )

ˆ( 0 | ,i U ip s w S=

i=0 or si=1.

4. EXPERIMENTAL RESULTS AND ANALYSIS 

We corrupted the standard 25  Lena image by

4-looks multiplying speckle noise (spatially uncorrelated 

and Gamma distributed) to obtain the synthetic speckled

image (SNR=3.15db), shown in Fig.2 (a). To make a

comparison, we assess an auto-iterative estimation method,

in which the estimation is performed only in the signal

sub-space, and its normalized probabilities

in the 1

6 256

( )
ˆ( 1| ,i ip s w S=

st and 4th iteration are shown in Fig.2 (c) and (d) 

respectively. It’s clear that the auto-iterative estimation

have no ability to correct the errors produced in the last

iteration, and thus, the estimation errors may be 

accumulated in the whole procedure of iteration. 

The 1st and 4th results of the turbo iterative estimation

are shown in Fig.2 (e) and (f), and they indicate that the 

soft-estimation in one sub-space can efficiently correct the 

errors produced at the last soft-estimation in the other sub-

space, which is because the exchanging information in the 

two orthogonal sub-spaces is complementary. Here, 1.0

is used for the Potts model to control local smoothness (

is adaptive to the tested images).

Then, the proposed method is also evaluated on a 6-

looks X-band airborne SAR image, shown in Fig.3 (a),

and the final estimation result of hidden state is shown in

Fig.3 (b), which well represents the singularity structures

in the image: the edges of farmlands are very clear in the 

result; the left-bottom heterogeneous areas, which contain

many sharp transitions, also outstand in the result. Here, 

the control parameter 5.0  is used. 

Clearly, the above results can well describe the

heterogeneities of local texture and represent the

singularity structures in the speckled images. The 

detection of singularity structures is very useful for many

other applications such as restoration, segmentation as

well as edge detection et al. 
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Fig.1 Framework of the proposed turbo iterative estimation method.

(a) synthetic speckled image      (b)image in the sub-space U

(c) 1st auto-iteration               (d) 4th auto-iteration 

(e) 1st Turbo-iteration                (f) 4th Turbo-iteration

Fig.2 The synthetic speckled image and experimental results – 

soft estimation of the singularity structures 

5. CONCLUSION

Wavelet-domain HMM’s have a promising ability to

detect the SAR image singularity structures. Based on the

models, the singularity structures can be described by the

hidden states. An efficient and practical method to

estimate these hidden states for SAR image is hard to be

developed due to the influence of the multiplicative

speckle noise. We proposed a novel turbo iterative method

for estimating hidden state in such an intricate case. Some

excellent experimental results confirm that the turbo

iterative principle developed in the field of coding theory

is efficient for image processing. 

(a) Real airborne SAR image (b) Estimate of hidden state

Fig.3: Experimental result for real SAR image 
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