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ABSTRACT

In this paper, we propose a novel method for the optimal
co-design of the optical and reconstruction filters in a
computational imaging system. Closed form solutions are
presented for design of optimal observation matrix for a
fixed reconstruction matrix. An iterative method for
computing global optimal filters is then proposed based on
the derived analytical solution and the well known Wiener
filter. The performance of the proposed optimal filters
represents a universal bound on the performance of any
physically realizable computational imaging system.

1. INTRODUCTION

Traditional imaging systems utilize a lens or mirror in the
front end to form the image that is then sampled onto a
detector array. Examples of such systems include the
familiar optical cameras, and telescopes. The term
“computational imaging” describes the emerging field of
optical systems in which a true image is not formed by a
lens and simply sampled onto a detector but rather the
process of image formation is shared between the power of
the optical elements and signal processing of the sampled
amplitudes. Several point solutions serve to illustrate the
utility of this approach as it can obtain system level
performance exceeding separately optimized optical and
signal processing designs [1,2]. This effort seeks to
determine a global bound on the computational imaging
approaches. An optical system with no physical
constraints is considered, and then increasing levels of
constraints are applied. The types of constraints which
can be considered are (in order of how much they
constrain the solution space): energy conservation of the
optical system (photons only detected once), isoplanatism
of the optical field (rows of the observation matrix are
shifted versions of each other), low pass response of the
optical system (corresponding to the limiting physical
aperture), and more. This paper takes steps towards the
physical constraint of photons only being sensed once as
well as considering the unconstrained system.

In this paper, we propose a framework for the design
of a computational imaging system that incorporates an
end-to-end performance metric. Specifically, we compute
the observation filter (defined in Section 2) that minimizes
the mean squared error (MSE) performance between the
final output image and the original scene. Coupled with
the well known optimal Wiener reconstruction filter [3],
we propose an iterative method to arrive at the jointly
optimal observation and reconstruction filter. Based on
the empirical observations of the output of the iterative
process after convergence, we propose a simple analytical
method for the construction of an observation matrix and
the associated reconstruction matrix. The proposed
construction technique applies equally to the case of white
and colored noise models.

Potential applications of the proposed designs include
hyperspectral imaging, and computational tomography.
Specifically the proposed design methods are being
considered for the design of a pervasive flat form factor
imaging system [4]. The co-design of the optimal
observation and reconstruction matrices uses tools from
vector optimization and principal component analysis [5].
Most of the existing signal processing methods focus on
computing reconstruction filters under various optimality
constraints. Analogous work in the communications
applications includes the design of optimal equalizers for
fading channels [6].

The remainder of this paper is organized as follows.
Section 2 presents the system model and description.
Section 3 considers the co-design of the observation and
reconstruction filter and Section 4 concludes the paper.

2. SYSTEM MODEL

We consider a simplified model of the imaging system of
interest. A functional block diagram of the system is given
in Fig. 1. The two dimensional scene of interest is
represented by column vector x, which represents the
scene information in row ordered form. The output of the
detector array y is given by
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Fig. 1: Simplified Block Diagram of Computational Imager.
The combined effect of optical lens and detector array is
represented by observation matrix H and the reconstruction
process is represented by matrix L.

Fig. 2: Plot of Error Vs number of iterations

= +y Hx z (1)

where, H is the observation matrix that represents the
combined effect of the optical lens and detector array, and
z represents the measurement noise. We assume that the
noise vector z is circularly symmetric Gaussian random
variable with zero mean and autocorrelation zR . The

dimensions of H equal m x n. Further, we assume that m �
n, which corresponds to an imager that has lesser number
of observation pixels than in the original scene at the
highest resolution. The observation vector is processed in
linear manner by reconstruction matrix L. The goal of the
computational imaging system is to accurately reconstruct
the image x at the output of the digital processing. The
reconstructed image x

�

is represented by

( )x Ly L Hx z
∧

= = + (2)

The objective of the proposed design methods is to jointly
construct H and L to optimize end-to-end system
performance.

3. OPTIMAL CO- DESIGN OF H AND L

The overall error vector, e, in the image formation task is

defined as
∧

= −e x x . The mean squared error (MSE) can
be written as

( ) { ( )}=t tE e e E Tr ee

Further, this MSE can be simplified as
{ ( )} { [( )( ) }= − −t tE Tr ee E Tr x Ly x Ly (3)

{ ( )} ( 2 )= − + +t t t t
x x x zE Tr ee Tr R LHR LHR H L LR L (4)

where, ( )Tr A is the trace of A and { }t
xR E xx= is the

autocorrelation matrix of the input signal.
The optimization problem of interest can be formally

stated as

{ , }
min ( 2 )− + +t t t

x x x z
H L

Tr R LHR LHR H L LR L (5)

Solving (5) analytically is intractable. Hence, we use an
approach analogous to the double minimization algorithm
proposed by Blahut-Arimoto [7] and rewrite optimization
problem (5) into two simpler optimization problems. We
then use a simple iterative process to compute the
observation and reconstruction matrices.

The two optimization problems are posed as

{ }
min ( 2 )− + +t t t

x x x z
H

Tr R LHR LHR H L LR L (6)

for a fixed reconstruction filter L and,

{ }
min ( 2 )− + +t t t

x x x z
L

Tr R LHR LHR H L LR L (7)

for a fixed observation filter H. The optimal solution to
(7) is given by the Wiener filter,

* 1( )−= +t t
x x zL R H HR H R (8)

It can be easily derived that the optimal H* for a given L
matrix, i.e., the solution to (6), equals the pseudo inverse

of L, and is given by
* 1( )−= t tH L L L (9)

Computing a H* and L* that jointly satisfy (8) and (9) leads
to the result that the entries of H increases without bound.
The effect of the unbounded H is to mask out the effect of
noise. This problem of unbounded growth is naturally
overcome by considering the design of H with physical
constraints. Currently, no constraint on L is imposed,
since it’s a computational block.

3.1. Optimization under physical realizability
constraints

To ensure that photons are assumed to be sensed only once
implies that the RMS sum of each row of the observation
matrix is equal to one. If it were less than one, then some
photons were not collected by the system leading to sub-
optimum performance. To achieve a value greater than
one would require optical “gain” in the sensing system –
the amount of light collected from a single object point
exceeds the amount present. We chose to approach this
physically significant constraint in a series of small steps,
thereby allowing us to examine the implications of each.
As a first step we imposed the constraint that required the
sum of all rows in the observation matrix to equal unity.
The constraint set � is defined as

1 1{ : }� × ×= =n mH Hj j

where, ja x b is a matrix of size a x b with all elements being
one. The optimization problem can now be stated as
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{ }
min ( 2 )

�∈
− + +t t t

x x x z
H

Tr R LHR LHR H L LR L (10)

This constrained optimization problem can be solved
using the method of Lagrange multipliers. Define the new
objective function as

1 1( 2 ) ( )t t t
x x x z n mJ Tr R LHR LHR H L LR L Hj jλ × ×= − + + + − (11)

where, λ is the Lagrangian operator. The partial
derivative of J with respect to H may be computed as

12 2 0t t t t
x x n

J
L R L LHR j

H
λ ×

∂ = − + + =
∂

(12)

1 1
1

1
( ) (2 )

2
t t t

x n xH L L L R j Rλ− −
×� = − (13)

Substituting in the constraint, we find the Lagrangian
operator as

1 1

2
( )t t t

n mL j L Ljλ
α × ×= − (14)

where, 1
1 1n x nj R jα −
× ×= is a scalar constant that depends on

noise autocorrelation. Hence,

1 11 1
( ) ( )t t

x n n m n xH L L L R j Lj R
α α

− −
× ×= − + (15)

Thus, the optimal observation matrix H in the set � for a
given reconstruction filter L is given by (15).

3.2. Iterative method

The solutions to the two optimization problems (6) and (7)
results in a set of two equations (8) and (15) in two
variables L and H. However, solving for the optimal H
and L in terms of xR and zR is intractable. Instead a

standard iterative process that mimics the well known
double minimization method [7] is used to compute jointly
optimal H and L, i.e., to find an H and L that satisfy both
(8) and (15). The iterative process consists of the
following steps:

1. Start with any arbitrary H1 matrix that belongs to
� Set the iteration number i =1.

2. Compute Li for this observation matrix Hi using (8)
3. Compute Hi+1 for the reconstruction matrix Li using

(15)
4. After the ith iteration, the MSE is given by

( 2 )t t t
i x i i x i i x i i i z iTr R L H R L H R H L L R Lγ = − + +

5. Set i = i + 1. Repeat steps 2 to 5, until a desired
stopping condition is met. A standard threshold
stopping criteria based on successive difference in

iγ is used.

The convergence of this iterative process is depicted in
Fig. 2, which plots the variation of the MSE with number
of iterations. Clearly, the algorithm converges within a
few iterations to the optimal solution. We found that the
iterative process converges for all initial values of H and
for both colored and white noise cases.

Interestingly, we noticed that for a fixed andx zR R ,

the iterative process converges to a constant value for the
product of L and H, for all initial values of H. This
observation that the product of the optimal observation
and reconstruction matrix is a constant motivates the
following design methodology for the observation matrix
H.

3.3. Design of H and L

Denote by M the matrix product of L and H after the
convergence of the iterative process. i.e.,

lim i i
i

L H M
→∞

= (16)

Substituting for Li from (8) into (16) we obtain
1( )−+ =t t

x x zR H HR H R H M (17)

Post multiplying (17) by xR and then subtracting both

sides from xR results in,
1( )t t

x x x z x x xR R H HR H R HR R MR−− + = − (18)

Invoking the Matrix Inversion lemma, we obtain
1 1 1[ ( )]− − −+ = −t

x z xR H R H R I M (19)
1 1 1[ ( )]t

z x xH R H R I M R− − −
� = − − (20)

An optimal H can be now designed using standard
principal component analysis. Express H in terms of its
singular values and singular vectors as 1 2

t
HH Q Q= Λ ,

where, 1 2andQ Q are orthogonal matrices and HΛ is a

diagonal matrix that contains the singular values of H.
Similarly, we can express autocorrelation matrix zR and

matrix 1 1[ ( )] ]− −= − −x xN R I M R in terms of their

eigen value decomposition as

3 3 4 4and
z

t t
z R NR Q Q N Q Q= Λ = Λ .Rewriting (20), we

obtain
1 1

2 1 3 3 1 2

4 4

( )( )( )

=

t t t t
z H z H

t
N

H R H Q Q Q Q Q Q

Q Q

− −= Λ Λ Λ

Λ
(21)

Now selecting 1 3=Q Q , (21) simplifies to
1

2 2 4 4
−Λ Λ Λ = Λt t

H z H NQ Q Q Q (22)

An obvious solution to this equation is given by

2 4 , =λ λ λ=
i i iH N zQ Q where, λ

iH represents the ith

singular value of H, and ,λ λ
i iN z represent the ith eigen

value of N and z respectively.
The proposed design of H. and L matrices may be

succinctly summarized in the following steps. For given
signal and noise autocorrelation matrices, compute the
optimal product of LH using the proposed iterative
method. Choose the eigenvectors Q4 of N as the right
singular vectors 2Q , of H; and choose the eigenvectors

3Q of z as the left singular vectors 1Q of H. Also, choose
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the ith singular value of H as =λ λ λ
i i iH N z . Once H is

computed, find L as the optimal Wiener filter (8).
Recognize that the proposed H is not a unique

solution to the MSE minimization problem. Any H and
associated L that satisfies (16) is a potential solution. This
observation that there exists a set of optimal H matrices
raises the possibility that a physically realizable filter can
be generated that is optimal.

To illustrate the performance of the proposed method
an observation matrix H and reconstruction matrix L were
constructed. This observation matrix H was applied to a
standard Lena image and the resulting observation are
given in Fig. 3a. As with any typical computational
imager, the image of the scene is indiscernible at the
output of the detector. The reconstructed image (given in
Fig. 3b) though has very high visual quality and also has a
high peak signal to noise ratio (PSNR) of 37.05 dB.

We also constructed a family of physically realizable
observation filters that can be succinctly represented as a
compact set. For this constraint set on H, we computed
the nearest realizable filter to the optimal H using the
method of projection onto convex sets (POCS) [8].
Recognize that the POCS method does not generate the
optimal H with the required constraints; the POCS method
generates a point in the constraint set that is closest in
MSE sense to the initial point.

The robustness and gains that are achieved using an
adaptive H matrix is now quantified using numerical
simulations. Consider an imaging system in which the
optimal observation matrix is designed for a given Rx and
Rz. Now let the same observation matrix be used in cases
where the noise characteristics are changed. For each of
the different noise cases, the optimal reconstruction matrix
is used. The variation of the PSNR for different noise
variances is given in Fig. 4. For comparison, the
performance of a fully adaptive imaging system in which
both the observation and reconstruction matrices are
modified based on the different noise vectors is also given
in Fig. 4. The gains in adapting the observation filter are
evident from Fig. 4. It should also be noted that the
performance of the proposed adaptive method serves as an
upper bound on performance of any physically realizable
computational imaging system

4. CONCLUSION

This paper presents preliminary results on the joint design
of the observation and reconstruction filters in a
computational imaging system. The proposed framework
can be used to design series of physically realizable
optical filters under various constraints. Specific
applications of the proposed designs are being considered
for the design of a novel flat form factor imaging system.
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(a) (b)
Fig. 3: The output of the observation filter and the
reconstructed image. The PSNR of the reconstructed image
equals 37.05

Fig. 4: Plot of PSNR versus noise variance
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