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ABSTRACT

Reconstruction algorithms to compute a single improved 

resolution image from multiple lower resolution images 

have application in the design of cameras with flat form 

factors. The accuracy of these reconstructions will depend 

on measurement noise, measurement quantization, the 

structure of the image acquisition system, and the 

accuracy of the image acquisition model. This paper 

compares the expected and simulated performance for 

reconstructions from multiple lower resolution images. 

The analysis shows that designs using lenses with 

different imaging characteristics significantly improve the 

theoretical performance results. In addition, lens diversity 

allows the reconstruction problem to be naturally 

partitioned into a set of loosely coupled smaller 

reconstructions that are computationally more 

manageable.  

1. INTRODUCTION

A typical optical imaging device uses a single lens to 

focus the desired image onto a sensor array and then 

digitizes the output of each sensor. The bulk of the cost 

associated with this approach is usually in the optical 

elements. The length requirements of the optical column 

preclude the use of a flat form factor for the device, but  

flat cameras have many potential applications ranging 

from conformal sensing skins on surveillance aircraft to 

head-mounted camera patches for firemen and rescue 

workers.

    In contrast to the traditional imaging approach, in radio 

astronomy or medical imaging [1,6] the image field is 

sampled with lower resolution elements, and image 

reconstruction methods are used to compute better quality 

images.  Recent advances in optical imaging sensors have 

created an opportunity to bridge these two imaging 

approaches to design devices with a flat form factor [5].  

For example, the TOMBO imaging device [7] uses an 

array of small lenses and CCD sensors to create a 

corresponding array of overlapping low-resolution images 

which are recombined to form a higher-resolution image. 

Other designs have been proposed [4,8]. This type of 

reconstruction task uses methods similar to those of 

computed tomography in medical imaging [6] and image 

registration [e.g. 2].   

Reconstruction of high resolution images from 

multiple overlapping low resolution images is a well-

known theoretical super-resolution problem [3]. The 

resolution of the reconstruction will depend on how many 

different low resolution images are available and the 

amount of relative translation between them at the range 

of the scene of interest. Theoretically, small translations 

are desired for high resolution, but small translations also 

result in a small amount of new information from each 

additional image and require a higher bit precision in the 

measurements to represent small but significant 

differences.

The objective of the approach described here is to 

develop computationally efficient procedures for high-

quality image reconstruction.  Partitioning the problem 

into independent reconstructions of small image tiles can 

reduce computation, but all the information in the 

measurements may not be used. In this paper, we explore 

the use of lens diversity and matched partitioning using 

the minimum variance estimator. Performance of the 

reconstruction algorithm is improved and made more 

robust by adding observations taken from sensor/lens 

systems with different magnifications. The solution with 

multiple lens magnifications is shown to lead to a modular 

reconstruction method that allows small loosely coupled 

sub-tiles to be estimated separately. The technique allows 

for parallel computation and merging of multiple 

reconstruction results. Both expected error computations 

and simulated reconstruction examples demonstrate the 

advantages of our approach. 

2. MODEL OF THE IMAGING SYSTEM  

In a traditional single lens high resolution imager, the 

observed image g is related to the desired image f by an 

observation matrix H as shown in Equation (1). 
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g = H f + v. (1)

The two dimensional images are stored in the column

vectors f and g in row order, and vector v represents 

uncorrelated measurement noise. The observations in g

are viewed as our estimate of the desired image f.

Sometimes image restoration may also be used when 

statistics of the noise and image source class are known. 

    The H matrix represents the model of the imaging

system. Typically the system is in focus, and the point

spread function of the imaging system is assumed to be 

small compared to pixel size. The resolution of g is 

limited by the size of the sensor pixels and lens

magnification. It is also assumed that the exposure time is

chosen to provide the desired dynamic range of measured

pixel values from the sensors 

The lens just described requires a “cubic” or large form

factor. A flat camera form factor would have to use a 

smaller lens positioned closer to a smaller sensor array.

The change in magnification factor would reduce the

resolution of g. Equation (1) would still be the model, but

the size of g would be much smaller than the traditional

system and H would be modified for the characteristics of 

the small lens.

An array of small imaging systems, called sub-imagers,

could provide information needed to improve the

resolution of g. Each sub-imager would have a micro lens

and a small pixel sensor array. Assume that the desired

image at the desired resolution has Kf rows and Lf

columns. The column vector f will have N= Kf * Lf

elements.

Let g00 be the J element pixel array associated with a

single sub-imager, where J is much smaller than N. A 

second identical sub-imager, g01, is positioned so that its 

field of view is shifted slightly in the horizontal direction.

This is represented by a shift of X pixels in the desired

image vector, using a shift matrix Z with elements z( k, l)

= (k + 1- l). Similarly, let g10 be another identical sub-

imager with a vertically shifted field of view. The model

for the shifted images is given by Equation (2). It is

assumed that f spans the field of view for all sub-imagers.

g00  = HS f + v00  = H00 f + v00.

g01 = HSZ
X
 f + v01 = H01 f + v10.

g10 = HSZ
Y
 f + v10 = H10 f + v10.

(2)

When multiple small images formed with multiple

small lenses are used to create an estimate of the desired

image, it can be considered a problem of image

reconstruction, because new observations can be used to 

add new information about f. A K x L array of M=K*L

sub-imagers will produce M low resolution images with a 

total of M*J image pixels. Using all the pixel arrays from

all the sub imagers, a better estimate of the original image

can be made, for example as described in [7]. Equation (3) 

represents the combined observations from the array of 

sub-imager sensors in the same form as Equation (1). 

However, in this case, the array of low-resolution images

contained in g does not represent the final image we wish

to view. These measurements must be used to compute a

higher resolution estimate of f.
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A linear minimum variance of error estimate for f can 

be computed using Equation (4), where f0 is the expected 

average value for the image, Rv is the covariance matrix

for the noise vector v, and P0 is the initial image

covariance matrix.

f  = f0 + P0 H
t( H P0 H

t + Rv )
-1 (g – H f0)

    =  f0 + A (g – H f0), (4)

    In general the lens characteristics represented by H will 

add a number of adjacent pixels in the original image with 

approximately uniform weighting to form each observed

pixel in g. The resulting null space makes this

reconstruction problem ill conditioned and will limit

performance.

3. DIVERSITY IN IMAGE MAGNIFICATION

The performance of the image pixel estimator of 

Equation (4) can be improved by taking additional

measurements. A second set of measurements for the

same f taken with the same type of sub-imagers will help

in averaging noise, but will not add much new

information. However, if a different imaging geometry is

used for a second set of measurements, there will be much

greater improvement in the reconstructed image. Using

two different sub-imager arrays with different imaging

system characteristics as shown in Equation (5) can

improve performance by reducing this null space. 

vf
H

H

g

g
g

II

I

II

I

(5)

Figure 1 demonstrates the improvement in the average 

expected squared error for reconstructions of image tiles 

using lens diversity. Sub-imager array type I uses a 3x3 

array of sub imagers in which each sub-imager has a 5x5

pixel sensor and each pixel is the average of a 3x3 pixel
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region of the original image. The lower resolution type II

sub-imager array uses a 5x5 array of sub imagers in which

each sub-imager has a 3x3 pixel sensor and each pixel is 

the average of a 5x5 pixel region of the original image.

(a)

(b)

Figure 1: Average expected squared error as a function of

measurement noise variance for several reconstruction 

approaches for a single image tile. Both full and trimmed

reconstructions are shown. 

Figure 1(a) plots the average expected squared error 

for a reconstructed 19x19 pixel image tile as a function of

the variance of the added noise. It is assumed f is selected 

from the set of all possible images with pixel values

between 0 and 255. For each imaging geometry three 

estimators using different values for estimated noise

variance were tested. When the expected noise variance is 

100, there is a high average expected error in f even

when the actual noise variance is low. When the expected 

noise variance is close to the actual value, the average 

expected squared error is reduced by 60% in the low noise

case when both lens types are used instead of the single

type I lens. The same number of observations is used in

both cases. There is a corresponding reduction of 33% 

when the noise variance is 1. Addition of a third lens type

further reduces error for the low noise case. 

The expected error in the estimates of the image pixels 

is not uniformly distributed over the 19x19 pixel tile, and 

the pixels at the edge of the tile have the lowest

confidence. In Figure 1(b) some results from Figure 1(a) 

are compared to results trimmed to just the 15x15 center

of the 19x19 tile. There is noticeable improvement in the 

average expected error for combined lens systems when 

only the 15x15 center of the reconstruction is used. For

the two lens system, when the expected noise variance is 

close to the actual value, the average squared error is 

reduced by 45% in the low noise case and by 37% when

the noise variance is 1. This shows that independent

computations for small overlapping tiles can be used for a 

good first approximation when there is lens diversity, and

this will greatly reduce computational complexity. The

results for a single lens system do not show any

significant advantage in trimming the edge pixels.

Results consistent with those of Figure 1 are obtained

from simulations using added measurement noise or

quantized measurement values. The bridge image in 

Figure 2 from the USC data-base was divided into small

overlapping tiles for reconstruction.

(b) (c)

Figure 2: Original 512x512 image in (a) is reconstructed in 

tiles of 19x19, 19x34, or 34x34 pixels. Two 19x34 tiles are

shown in (b) and (c). 

Figure 3 shows plots of the average squared error for

simulated reconstructions of multiple image tiles from

Figure 2 as a function of the variance of the added noise

and the number of bits used to represent the measured

values in g. The quantization effects can be interpreted as

adding noise with a variance determined by the values of 

the least significant bit of the quantized measurements.

The performance for individual tiles varied depending on

the actual content. Reconstructions of random patterns
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matching the assumptions used for Figure 1 yield the

predicted results.

         (a)                                          (b) 

Figure 3: Average squared error as a function of measurement

noise variance (a) and number of bits per measurement (b) for 

image tiled from Figure 2. 

4. COMPUTATION OF LOW RANK UPDATES 

     Figure 4 shows that using twice as many measurements

to compute estimates of image tiles that are twice as large

further reduces the expected average squared error when 

two types of lens systems are used. The estimates made

for 30x15 centers of 34x19 tiles are compared to the 

results shown in Figure 1(b). When three types are used 

the initial local estimate is better and thus the relative

improvement from the larger local area is less noticeable. 

Figure 4: Average expected squared error for reconstruction of

30x15 pixel tiles compared to error for 15x15 pixel tiles.

This improvement can be accomplished by using 

Equation (4) directly with twice as many measurements,

or by first computing the estimates for the individual

19x19 tiles and using low rank updates based on Equation 

(6) to update each small tile based on the other. Here A

represents two uncoupled tiles. When the expected noise

variance is close to the actual value, the average squared 

error is reduced by 45% in the low noise case and by 20% 

when the noise variance is 1.

(A +BCD)
-1

 = A
-1

 – A
-1

B(C
-1

+DA
-1

B)
 -1

DA
-1 (6)

5. CONCLUSIONS 

Reconstructing a high resolution image from multiple

lower resolution images is a well known theoretical

problem in super resolution. In practical implementation,

the results are often poorer than expected. This paper 

shows that improvement in the quality of the results and

reduction of the computational load can be achieved when

a combination of different lens systems is used to acquire

the low resolution images. Although the second added 

lens system has a lower resolution than the first, it reduces

the null space of the reconstruction and allows the 

problem to be partitioned for more manageable local

computations. Adding a third lens system can eliminate

the null space. 

    Computation of average expected squared errors and

simulations of reconstructions in the presence of added 

measurement noise and limited measurement precision 

demonstrate the advantages of lens diversity for image

reconstruction. This can be extended to derive strategies

for adding new measurements. Future studies will

consider the effect of inaccuracies in H due to 

misalignment or modeling assumptions.

6. REFERENCES

[1] R. N. Bracewell, Two-Dimensional Imaging, Prentice Hall, 

Englewood Cliffs, N.J., 1995. 

[2] L. G. Brown, “A Survey of  Image Registration Techniques,” 

ACM Computing Surveys, vol. 24, no.4, pp325-376, Dec. 1992. 

[3] S. Chaudhuri, ed. Super-Resolution Imaging, Kluwer 

Academic Publishers, Boston MA, 2001. 

[4] M. Christensen, M. Haney, D. Rajan, S. Wood, S. Douglas,

“PANOPTES:  A thin agile multi-resolution imaging sensor,” 

invited GOMACTech 2005.

[5] D. Daly, Microlens Arrays, Taylor and Francis, N.Y.. 2001. 

[6] A. Macovski, Medical Imaging Systems, Prentice Hall, 

Englewood Cliffs, N.J., 1983. 

[7] J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, 

T. Morimoto, N. Kondou, D. Miyazaki, Y. Ichioka, “Thin

Observation Module by Bound Optics (TOMBO):  Concept and 

experimental verification,” Appl. Optics-IP, vol. 40, no. 11, p. 

1806, Apr. 2001. 

[8] S. Wood, D. Rajan, M. Christensen, S. Douglas, B. 

Smithson, “Resolution Improvement for Compound Eye

Images through Lens Diversity,” Proc. 11th DSP 

Workshop, Taos, NM, August 1-4, 2004.

II - 596

➡ ➠


