
IMAGE-BASED RENDERING WITH DEPTH INFORMATION
USING THE PROPAGATION ALGORITHM

Ha T. Nguyen and Minh N. Do

Department of Electrical and Computer Engineering,

University of Illinois at Urbana-Champaign

{hanguyen, minhdo}@uiuc.edu

ABSTRACT

This paper proposes a new approach for the image-based render-
ing (IBR) problem. IBR has many potential applications such as
remote reality, telepresence in which traditional computer graphic
techniques require high computational complexity. Our algorithm
proactively propagates all available information from actual cam-
eras to virtual cameras, using a depth availability assumption. This
process turns the IBR problem into a nonuniform interpolation
problem at the virtual camera image plane, which can be done effi-
ciently at once for all image pixels. Experimental results show the
proposed algorithm has low computational complexity and pro-
duces accurate rendering, especially around object boundaries-where
most of existing methods fail.

1. INTRODUCTION

Image-Based Rendering (IBR) is an emerging technology which
enables the synthesis of novel realistic images of a scene from vir-
tual viewpoints, using a collection of available images. The appli-
cations of IBR can be found in various situations such as virtual
reality, telepresence, thanks to the complexity and performance
advantage over model-based techniques, which bases on complex
3-D geometric models, material properties and lightening condi-
tions of the scene. A detailed survey of the current IBR techniques
can be found in [11, 13].

Although some existing IBR techniques do not use the geo-
metric information of the scene as the input, most of them do try
to reconstruct (explicitly or implicitly-e.g. via feature correspon-
dences between images) the 3-D scene as an intermediate step to
render virtual images. Light-field [8] and Lumigraph [7] are ex-
ceptions, but they require many images to compensate the geo-
metric information. The most commonly used approach, called
ray-tracing, is to trace a ray from the camera origin to each pixel
in the virtual image and try to find the point where this ray hits an
object surface in the scene [6, 12, 4]. The intensity of this point
is then interpolated using information of the neighboring pixels in
the image collection. The ray tracing approach hence is very com-
putationally complex, and has a limited rendering quality around
the object boundaries [6, 12].

Our approach, which we call the Propagation Algorithm, is
different from existing methods in two aspects, namely: 1) we as-
sume that the depth information is available for some or all image
pixels; and 2) we do not use the ray-tracing approach and inten-
sity interpolation on pixel by pixel basis, but we rather proactively

This work was supported by the National Science Foundation under
Grant ITR-0312432.

propagate all the available information to the virtual image plane
first, then do the intensity interpolation only once for all the pix-
els. For the first aspect, depth information is available in synthesis
images, and this assumption is also made for realistic images as
well [6, 10, 3]. The assumption is justified by the availability of
range camera technology (like 3D range scanner [9]). Another rea-
son is that the existing correspondence techniques [5] can provide
the depth of certain image pixels (e.g. image features like corners,
edges). Moreover, in some applications we can insert makers in
the scene to keep track of the depth of certain points. The sec-
ond aspect is motivated by a fact usually pointed out in literature
that the IBR problem is a nonuniform interpolation problem [13].
However, our algorithm does not locally interpolate pixel inten-
sities (using nearby cameras and/or nearby pixels), but it follows
the nonuniform interpolation framework [2], which improves the
rendering quality, especially around the object boundaries, while
maintaining a low computational complexity.

The remainder of this paper is organized as follows. Section 2
sets up the problem. Section 3 describes our algorithm and exper-
imental results in the case where all the pixels are associated with
depth information. Section 4 presents the algorithm when we have
the depth information for only a strict subset of pixels. Finally
section 5 concludes our paper and discuss future work.

2. PROBLEM STATEMENT

To illustrate the main idea of our propagation algorithm, we con-
sider a simple setting called 2-D light field [8, 7, 6] as described in
the Fig. 1. The algorithm can be naturally extended to more gen-
eral settings of the plenoptic function [1]. All the actual and virtual
cameras are pinhole cameras and lie on the camera line d = 0 with
parameter u; and all the focal lines are on the line d = f with pa-
rameter v. Each ray of the parameterization is uniquely determined
by a pair (u, v), where u determines the camera position, and v de-
termines pixel’s local coordinate on the image plane of camera u.
For this simple setting, we will present our algorithm and its result
for 1-D signals (e.g. image lines).

We assume that we have as input intensity images {I(u, v) :
(u, v) ∈ SI} and depth information {D(u, v) : (u, v) ∈ SD}
for some set SI and SD . The distribution of intensity cameras and
range cameras (depends on SI and SD) could be different, and
typically SD is a subset of SI (SD ⊂ SI) due to the advantage
of the intensity cameras on the availability and the cost over the
range cameras. As output we would like to determine the intensity
images {I(u, v) : (u, v) ∈ SR}, where SR is a set of rays to be
rendered, which usually includes SI (SI ⊂ SR). This implies

II - 5890-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

0

f

u

v

d

OBJ

BA

v’

∆ v

u0

v0 v’

C

Fig. 1. A simple scene setting. Not all the information of actual camera
u0 is directly used to render the image at virtual camera u. In the figure
the intensity at A is useful, but at B it is not as it is occluded by OBJ!

that the position of all the actual and virtual cameras are available
(calibrated cameras). We furthermore assume that:

1. Lambertian surfaces: the radiance leaving a surface point
is independent of the angle. This means that the intensity
of a point in the 3D scene is the same seen from cameras at
different positions [5]; and

2. Smooth surfaces and surface intensity functions: The
surfaces and surface intensity functions of the scene are suf-
ficiently smooth (e.g. bandlimited functions). This implies
that these functions can be interpolated using the values of
a finite number of samples [2].

3. PROPAGATION ALGORITHM WITH FULL DEPTH
AVAILABLE

In this section we present our algorithm in the case SI = SD =
S, i.e. for every pixel we know both the intensity and the depth
information.

3.1. Overview of the algorithm

Ray tracing techniques in the traditional computer graphics and
computer vision communities try to render novel images pixel by
pixel. When we render a ray r at a pixel of the virtual camera, we
first try to recover the depth associated with this ray, i.e. where this
ray hits an object surface in the scene. To avoid the 3-D geomet-
rical reconstruction, techniques like local color consistency (com-
paring the intensity of corresponding pixels [12]) or depth match-
ing (comparing the depth of corresponding pixels [6]) are proposed
to find the depth. Once we get the depth, we can trace back to the
actual cameras to get the corresponding pixels. The rendered in-
tensity then is computed by interpolating the corresponding pixels
found from actual images. Ray-tracing techniques hence are very
computationally complex, and even with the help of depth infor-
mation, the rendering quality is still limited by depth discontinu-
ities around object boundaries [6].

In our propagation algorithm, we adopt a different approach.
For each virtual camera we try to get all the relevant information
available and relevant first, then we do the intensity interpolation
once for all the pixels. There are several advantages of this ap-
proach. First, such proactive use of available information allows
us to change the number of cameras during the rendering (e.g. in

real time system) without considerably modifying the algorithm.
Second, our approach allows occlusions to be detected in a simple
way, which reduces the computational complexity. Third, by do-
ing the interpolation at the end, we do not calculate the intensity
on the pixel by pixel basis, but we get the whole virtual image at
once, which also reduces the computational complexity. Forth, do-
ing the interpolation at the end can also help by taking into account
more information than considering only the intensity of neighbor-
ing pixels in existing methods (e.g. points in the same surface),
and therefore provide more coherent image pixels. Finally, our ap-
proach also allows us to obtain the intensity for pixels at the image
perimeter, where ray-tracing techniques fail because of the lack of
pixel correspondence.

The proposed algorithm includes the following steps, which
are illustrated in Fig. 2 and detailed in the following subsections:

1. Information Propagation: starting from the actual images,
using the depth information we propagate all the intensity
information to the virtual cameras. For example, in Fig. 1,
the intensity at pixel v0, v

′
0 of the actual camera u0 is prop-

agated to the point v, v′ of the virtual camera u.

2. Occlusion Removal: remove all the points in whose neigh-
bor there is at least a point with noticeable smaller depth,
which are likely occluded at the virtual camera. For exam-
ple in the Fig. 1 the point v′ is propagated from the pixel
v′
0, but then it should be removed because it is occluded by

object OBJ.

3. Intensity Interpolation: interpolate the remaining data us-
ing an appropriate kernel function depending on the char-
acteristics of the scene.

3.2. Information propagation

In the Fig. 1 the image of the point A in cameras at u and u0 are v
and v0. The shift of the pixel positions is:

∆v = −∆uf/d, (1)

where f is the focal length of the cameras, and d is the depth of A.
This equation shows that if we have the depth information at the
pixel v0, we can propagate the intensity at this pixel to the point
v = v0 + ∆v of the virtual camera. In general configurations,
equation (1) can be easily modified, and ∆v will depend on the
extrinsic and intrinsic parameters of both cameras. The informa-
tion propagation step is done as following for each virtual camera
u:

% Propagate information to virtual camera u
For each (u0, v0) ∈ S

v = Vu(u0, v0) = v0 − (u − u0)f/D(u0, v0);
I(u, v) = I(u0, v0);
D(u, v) = D(u0, v0);

Endfor

(2)

The result is a set of points:

Pu = {v = Vu(u0, v0) : (u0, v0) ∈ S}, (3)

which are associated with intensity and depth information Iu(v) =
I(u, v) and Du(v) = D(u, v) propagated as in (2).

This process can be done camera by camera independently,
so that our algorithm can work with an arbitrary number of ac-
tual cameras, and this number can be modified anytime during the
running of the algorithm without the algorithm being considerably
modified. Note that:

II - 590

➡ ➡

1. At this stage we still work on continuous signals, and so we
do not pixelize the position v.

2. All the information related to v is computed on the local
coordination of the virtual camera.

At this stage, all the information are propagated without con-
sidering any occlusion. In Fig. 1 the pixel v′

0 will be propagated to
the pixel v′ though it is occluded by the object OBJ. The following
subsection will present how we can prevent occluded points like v′

from being used in the interpolation step.

3.3. Occlusion removal:

Our occlusion removal step is based on the following observation.
Let us consider a point (for example B in Fig. 1) occluded at
the virtual camera, if enough information is available then there
should be a point (like C) in its ε-neighbor (in local v axe), with
σ-noticeably smaller depth. Vice-versa, if a point B has a ε-
neighboring point with σ-noticeably smaller depth, then almost
surely this point belongs to a different surface than B, and B will
be occluded by this surface.

In the observation, by B is a ε-neighbor of C we mean the
distance between images of B and C at the virtual camera are
within a distance ε, and by the depth of C is σ-noticeably smaller
than the depth of B we mean the depth of C exceeds the depth of
B by at least σ. In our experiment we used ε = 0.8 unit pixel and
σ = 0.05 × Du(c).

Following the observation, we remove all the points in whose
ε-neighbor there is at least one point with σ-noticeably smaller
depth, as following:

% Remove occluded points
For each b ∈ Pu

If ∃c ∈ Pu : |b − c| < ε, |Du(b) − Du(c)| > σ
Pu = Pu − {b};

Endif
Endfor

(4)

3.4. Intensity interpolation

The intensity interpolation step is processed at the end when all the
information relevant to the virtual camera is in hand. LetXu be the
remaining points after the occlusion removal step. As we assume
that the intensity function is smooth, with enough remaining points
we can reconstruct the intensity function, and so that the image is
rendered by resampling the intensity function at the pixel positions
(pixelization). In our experiment we use the cubic spline. The
interpolation step for each virtual camera u is as following:

% Interpolate the intensity function;
Iu = Interpolate(Xu, Iu(v)|v∈Xu)

% Pixelize Iu to get the rendered image at u
For each v : (u, v) ∈ SR

I(u, v) = Iu(v);
Endfor

(5)

One issue of the interpolation step is that usually the intensity
function is only piecewise smooth, and so the interpolation step
will produce some variation around the discontinuities (i.e. edges).
To keep the variation small, in the experiment we double our data
before the interpolation. This technique, instead of interpolating

the function’s value at n points x1, x2, . . . , xn, interpolates the
function’s value at 2n points x1, x1+µ, x2, x2+µ, . . . , xn, xn+µ
for some small value of µ (µ = 0.000001 in the experiment). The
function’s value at xi + µ is given by the function’s value at xi.
To overcome this problem at the edges, we can use edge detection
techniques [5], and interpolate the intensity function piecewisely.

We observe that our approach in fact turns the IBR problem
into a classical nonuniform interpolation problem, which offers a
rigorous investigation of the rendering quality and error, as well as
opens new room for applying existing mathematical tools.

3.5. Experimental results

To illustrate our algorithm step by step, we adopt a synthesis con-
figuration. As the camera line is parallel with the rows of the image
planes, we can do our rendering row by row.

10 5 0 5 10 15 20 25 30
0

5

10

15

20

camera position
de

pt
h

0 10 20 30 40 50 60
50

0

50

100

150

200

pixel

in
te

ns
ity

10 0 10 20 30 40 50 60
6

8

10

12

14

16

pixel

de
pt

h

10 0 10 20 30 40 50 60
6

8

10

12

14

16

pixel

de
pt

h

Fig. 2. Propagation Algorithm. From top to bottom: a synthesis scene
seen from a camera 10.45; propagated points from cameras 9 (circle) and
12 (square); removed points (x-mark) and points remaining to interpolate
(circle); and the rendered image plotted on the actual one.

In the experiment, we choose a scene consisting of a back-
ground and objects with various depth. The object surfaces are
painted intensity functions of form αround(x) + β sin(γx) + η,
where α, β, γ, η vary from surface to surface. Fig. 2 shows an il-
lustration of our algorithm and the rendering result. We can see
that the algorithm produces a very good result in texture regions,
and even at boundaries the algorithm still performs very well.

II - 591

➡ ➡

4. PROPAGATION ALGORITHM WITH LESS DEPTH
AVAILABLE

In this section we present the algorithm in the case where SD is
strictly a subset of SI . The main idea is first to recover the depth
information for all the actual image pixels, then to apply the pre-
vious algorithm to render the virtual image.

To recover the depth of pixels of an actual camera u, we make
use of the correspondence between the intensity of actual images.
We first propagate depth-available pixels from other actual cam-
eras to camera u. Then at each propagated point, by calculating
the local intensity consistency [12] we can detect if there is an oc-
clusion. If there is no occlusion, we obtain the depth of this point.
By doing so, we will get the depth at a set of points on the image
plane of camera u. We then can do the interpolation to get the
depth for other pixels. Fig. 3 shows the recovered depth and ren-
dered image for the same configuration as in Fig. 2. Rigorously,
for each actual camera u, the algorithm is as following:

% Initialize the set of depth-available pixels
Du = {v : (u, v) ∈ SD};

% Propagate the depth
For each (u0, v0) ∈ SD

v = Vu(u0, v0) = v0 − (u − u0)f/D(u0, v0);

% Test the local intensity consistency
If I(u, v) ≈ I(u0, v0)

D(u, v) = D(u0, v0);
Du = Du + {v};

Endif
Endfor

% Interpolate the depth
Du = Interpolate(Du, D(u, v)|v∈Du)
For each v : (u, v) ∈ SI

D(u, v) = Du(v);
Endfor

(6)

5. CONCLUSION AND FUTURE WORK

In this paper we present a new approach for the IBR problem. By
assuming the depth information at some or all image pixels, the al-
gorithm produces an excellent improvement of rendering quality,
especially at the object boundaries, while maintaining low compu-
tational complexity. Furthermore, the proposed algorithm is flexi-
ble with the scene configuration, which enables implementation in
real-time systems. While the assumption about the depth availabil-
ity seems likely in the range camera technology of the future, our
algorithm still works with current technologies like feature cor-
respondence or markers. Furthermore, the approach provides a
new framework for a rigorous investigation of the rendering qual-
ity by turning the IBR problem into a classical low dimensional
nonuniform interpolation problem. The future work will be in this
direction.

6. REFERENCES

[1] E. H. Adelson and J. R. Bergen, “The plenoptic function and the
elements of early vision,” in Computational Models of Visual Pro-
cessing, M. Landy and J. A. Movshon, Eds. MIT Press, 1991, pp.
3–20.

0 10 20 30 40 50 60
6

8

10

12

14

16
The recovered depth at camera 9, using camera 12

pixel

de
pt

h

0 10 20 30 40 50 60
50

0

50

100

150

200
Rendered Image at virtual camera 10.45

pixel

in
te

ns
ity

Fig. 3. Depth information available every k = 5 intensity pixels and
uniformly distributed. The configuration is the same as in figure 2. On top:
the considered scene and the recovered depth at camera 9 (circle) using
depth depth available pixels of camera 9 and propagated depth available
pixels of camera 12 (square); bottom: the rendered image (circle) at 10.45
using two cameras 9 and 12 compared with the actual image.

[2] A. Aldroubi and K. Gröchenig, “Nonuniform sampling and recon-
struction in shift-invariant spaces,” SIAM Review, vol. 43, no. 4, pp.
585–620, 2001.

[3] C.-F. Chang, G. Bishop, and A. Lastra, “LDI tree: A hierarchical rep-
resentation for image-based rendering,” in Siggraph 1999, Computer
Graphics Proceedings, Los Angeles, 1999, pp. 291–298.

[4] P. E. Debevec, G. Borshukov, and Y. Yu, “Efficient view-dependent
image-based rendering with projective texture-mapping,” in In 9th
Eurographics Rendering Workshop, Vienna, Austria, 1998.

[5] D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach.
Prentice-Hall, 2002.

[6] Z.-F. Gan, S.-C. Chan, K.-T. Ng, K.-L. Chan, and H.-Y. Shum, “On
the rendering and post-processing of simplified dynamic light fields
with depth,” in Proc. IEEE Int. Conf. Acoust., Speech, and Signal
Proc., 2004.

[7] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen, “The lumi-
graph,” in Proc. SIGGRAPH, 1996, pp. 43–54.

[8] M. Levoy and P. Hanrahan, “Light field rendering,” in Proc. SIG-
GRAPH, 1996, pp. 31–40.

[9] M. Rioux, “Digital 3-d imaging: Theory and applications,” in Proc.
SPIE Conf. on Vis. Commun. and Image Proc., ser. Videometrics III,
1994.

[10] J. Shade, S. Gortler, L. He, and R. Szeliski, “Layered depth images,”
in Proc. ACM SIGGRAPH, Orlando, Florida, July 1998.

[11] H.-Y. Shum, S. B. Kang, and S.-C. Chan, “Survey of image-based
representations and compression techniques,” IEEE Trans. Circ. and
Syst. for Video Tech., vol. 13, pp. 1020–1037, Nov. 2003.

[12] C. Zhang and T. Chen, “A self-reconfigurable camera array,” in Eu-
rographics Symposium on Rendering., 2004.

[13] ——, “A survey on image-based rendering - representation, sampling
and compression,” EURASIP Signal Processing: Image Communica-
tion, pp. 1–28, Jan. 2004.

II - 592

➡ ➠

