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ABSTRACT

We evaluate the performance on compressed video of a number
of available similarity, blocking, and blurring quality metrics. Us-
ing a systematic, objective framework based on simple subjective
comparisons, we evaluate the ability of each metric to correctly
rank order images according to the subjective impact of differ-
ent (1) spatial content, (2) quantization parameters, (3) amounts
of filtering, (4) distances from the most recent I-frame, and (5)
long-term frame prediction strategies. The indicated weaknesses
of available metrics can be used as guides in the development of
future quality metrics.

1. INTRODUCTION

Many methods to measure the quality of an image or video se-
quence have been proposed in recent years. Although the Mean
Squared Error (MSE) and its popular variant, the Peak-Signal-to-
Noise Ratio (PSNR), are widely used, it is clear that neither metric
takes into account the perceptual functions of the human visual
system (HVS). Video quality metrics are useful in many applica-
tions, including assessing the quality of video transported over net-
works and guiding the design of video codecs.

Humans perceive quality on multiple dimensions simultane-
ously. One video may be simultaneously more blocky and less
blurry than another video. One approach to assess video quality
is to use HVS principles to determine a single value that charac-
terizes the overall video quality [1, 2]. An alternate approach is
to design quality metrics that assess a single impairment type in
isolation, such that the impact of multiple impairments can be sub-
sequently combined into a single quality value [3, 4].

In this paper, we concentrate on evaluating single-impairment
quality metrics in the context of video compression. We are in-
terested primarily in how well blockiness, blurriness, and simi-
larity metrics can rank order images according to the amount of
impairment added by common video compression components. In
addition, we are primarily interested in no-reference (NR) quality
metrics, since these are applicable in an environment where the
original video is not available. The ability of a metric to correctly
predict an ordered ranking of images given different amounts of
transmission errors is outside the scope of this work.

Some earlier reviews of image and video quality metrics are
available [5, 6, 7, 8, 9]. Each considers a different set of met-
rics and a different framework for evaluation. A comprehensive
overview of monochrome image quality metrics dating from 1974
to 1999 was presented in [5], which focuses on describing HVS
models without evaluation. Several monochrome full-reference
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(FR) image quality metrics were evaluated in [6], using the cor-
relation between the metric output and a subjective evaluation. In
[7], four quality metrics were evaluated in an error-prone environ-
ment: the SNR, PSNR, ITS [10] (an objective metric based on sub-
jective tests) and MPQM [1] (an objective metric based on HVS).
Three still FR image metrics that use HVS criteria are compared in
[8] using subjective tests. Three quality metrics [11, 12, 13] were
evaluated for video streaming in [9], which indicates the metrics
had a difficult time correctly ranking the quality produced by dif-
ferent codecs.

In this paper, we present a framework to systematically ex-
plore the impact of multiple parameters that affect compressed
video quality. Our goal is to test the ability of available similarity,
blocking, and blurring metrics to correctly order the subjective im-
pact of (1) different spatial content, (2) different quantization pa-
rameters, (3) different amounts of filtering, (4) different distances
from the most recent I-frame, and (5) different long-term frame-
prediction strategies. Because many metrics appear to work well
when averaged over an entire video sequence, we explore their per-
formance on a per-frame basis. Our evaluation, based on simple
subjective comparisons, exposes several inadequacies in the per-
formance of most metrics. However, any metrics which pass our
criteria may still require further evaluation using more exhaustive
subjective tests.

The paper is organized as follows: Section 2 discusses the
multi-dimensional aspects of quality. The metrics we evaluate are
summarized in Section 3. Our comprehensive comparison frame-
work is described in detail in Section 4. Section 5 compares the
metrics, while the paper concludes in Section 6.

2. MULTI-DIMENSIONAL ASPECTS OF QUALITY

Viewers perceive quality on many axes simultaneously. For ex-
ample, an image may be blurry, blocky, have ringing artifacts, or
have added high frequency energy. Temporally, a video may have
jerky motion, or added “mosquito” noise. In this paper, while we
are interested in the quality of videos, we assess only the quality
of the individual still images that comprise the video.

Blockiness arises from the vertical and horizontal edges along
a regular blocking grid that result from the block-based process-
ing in many image (JPEG) and video (MPEG) codecs. Coarse
quantization yields more blockiness, while edge-attenuating filters
reduce its perceptual effect.

Blurriness is caused by the removal of high-frequency content
from the original image/video signal. Increased blurriness can be
caused by coarser quantization, edge-attenuating filters, or over-
lapped block motion compensation (OBMC).

Ringing artifacts are caused by the absence of high frequency
terms during coarse quantization. They are most evident near high
contrast edges, and most prevalent in wavelet coders.
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Added high-frequency (HF) content is typical in video codecs
that use block-based motion compensation (MC). When coarse
quantization is combined with MC, blocking artifacts propagate
from I-frames into subsequent frames, causing structured HF noise
that is no longer aligned with block boundaries. Fractional-pel MC
and edge-attenuating in-the-loop filters help minimize this artifact.

Farias et al. [14] indicates that when artifacts are perceived
to have equal strength, blurriness is more annoying than either
added high-frequency noise or blockiness. Furthermore, interac-
tions among two artifacts types affect the perceived strength of
each.

3. SUMMARY OF QUALITY METRICS

In this paper, we consider three similarity, nine blocking, and three
blurring metrics.

Three similarity metrics. The similarity measures all require
both the original and degraded images. MSE and, equivalently,
PSNR use a pixel-by-pixel comparison between two images. The
structural similarity index (SSIM) [15] uses means, variances, and
correlations of both images. The psychovisual image quality eval-
uator (PIQE) [16] is a FR method consisting of two parts: a block-
iness component and a similarity component, denoted PIQE-S,
which counts the number of edges common to both the original
and degraded image.

Nine blocking metrics. We consider one FR and eight NR
blocking metrics. The blockiness component PIQE-B of PIQE
[16] uses the DCT DC coefficients to compute a FR blocking mea-
sure. Two slope-based NR blocking measures, boundary disconti-
nuity (BD) [17] and MSDS [18], were designed to identify areas
to apply de-blocking algorithms. Both assume that the slopes in-
ternal to a block are preserved during encoding. Gao et al. [19]
present a metric based on differences of averages of eight-pel rows
(columns) across vertical (horizontal) block edges. In the Phase
Correlation method [11], the denominator of the metric measures
inter-block similarity while the numerator measures intra-block
similarity.

The remaining four blocking metrics all incorporate some form
of HVS modeling. In the generalized block impairment metric
(GBIM), described in [13], HVS masking is incorporated by means
of weights derived from localized averages and standard devia-
tions across block boundaries. In [12], the Power Spectrum of
the 1-D absolute difference signal is calculated using FFT. Lumi-
nance and texture masking are exploited to scale the signal before
the frequency analysis. The DCT-Step metric [20] models block-
ing artifacts as 2-D step functions, and weighs results using local
background luminance and activity masking measures. The per-
ceptual block impairment metric (PSBIM) [21], which modifies
GBIM to include more comprehensive luminance masking, has a
similar structure to the metric in [11]. In PSBIM, the numera-
tor represents edge strength, while the denominator represents the
inner-block spatial similarity. None of these blocking metrics uses
temporal masking, or is parameterized with respect to the viewing
distance.

Three blurring metrics. All three blurring metrics are NR.
The first blurring metric computes a global blur for an image using
a histogram of DCT coefficients gathered from the compressed bit-
stream [22]. The second computes the spatial extent of each edge
in an image using inflection points in the luminance to demark the
start and end of an edge [23]. The third blurring metric actually
computes sharpness, the inverse of blurring, by calculating local

edge Kurtosis [24].

4. COMPARISON FRAMEWORK

In [9], video sequences were encoded at a single rate and the sole
parameter explored was the frame number. Our intention is to
explore the multi-dimensional parameter space that characterizes
quality in a systematic fashion. Quality perception is affected by a
number of parameters, including the six we consider:
1. The quantization parameter (QP) of the I-frames, QI .
2. The quantization parameter of the P-frames, QP .
3. The distance d between the current frame and the most recent
I-frame.
4. The video content. Static vs. high motion activity; contrast,
luminance and temporal masking influence quality perception.
5. The presence of edge attenuating filtering. Filters can be ap-
plied before compression (pre-filtering), during compression (in-
the-loop filtering), after reconstruction (post-processing), or im-
plicitly by using overlapped block motion compensation (OBMC)
and fractional-pel MC.
6. The video codec. We consider H.263 and H.264/AVC. These
differ, in part, in the size of their block partitions and the degree of
fractional-pel MC prediction.

To evaluate the metrics, we use simple subjective comparisons
to create a list of expectations that a well-designed metric should
satisfy. Expectation (A) considers the effect of spatial content,
(B,C) consider quantization, (D) considers filtering, (E) considers
distance d, and (F) considers the influence of a high-quality long-
term frame memory with H.264 [25].
Expectations:
(A) For the same QP and no filtering, coastguard is less blocky
than foreman. Similarly, the quantized coastguard is more similar
to its original than is the quantized foreman.
(B) Without filtering, blockiness increases and similarity decreases
as QP increases. This is always valid for I-frames, where blocking
artifacts are easy to define and locate. For P-frames, artifacts due
to heavy quantization may no longer align with block boundaries,
so many metrics may fail.
(C) With filtering, blurriness increases and similarity decreases as
QP increases.
(D) For fixed QP and d, more filtering decreases both blockiness
and similarity but increases blurriness.
(E) For fixed QP and filtering and for a single reference frame,
blurriness increases, blockiness increases (because artifacts accu-
mulate), and similarity decreases as distance from the most recent
I-frame, d, increases.
(F) For fixed QP, fixed filtering, and fixed d, using a long-term
(LT) high-quality reference frame improves quality; namely, it in-
creases similarity and reduces blurring and blocking.

We use the following framework to explore how well the met-
rics satisfy the above expectations. We consider three case studies.
The first, I0, consists only of I-frames with varying QI . We ex-
plore Expectations (A-D) for H.263 and H.264 with and without
loop filtering across different spatial content. The second, P1, con-
sists of an I-frame followed by multiple P-frames, where we vary
the quantizer while keeping QI = QP . For this case, we explore
Expectations (A-E), focusing on three values of d: d = 1, 6, 14.
Finally, the third case, P2, is designed to examine Expectation (F),
the visual impact of using a high-quality LT prediction frame in
H.264 [25]. P2 fixes both QI = 18 (nearly lossless) and QP = 32
(medium) and varies d across all values from 1 to 14.
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To isolate the impact of spatial content, we choose identical
frames for the comparison, regardless of the prediction structure.
Thus, for frame number 21 to use d = 1, we set frame 20 to be
an I-frame, while to achieve d = 14, frame 7 is an I-frame. We
examine two sequences, foreman and coastguard (frames no. 21
and 141, respectively). For I0 and P1, we vary the quantization pa-
rameter using constant increments starting from nearly lossless (2
for H.263 and 18 for H.264) to nearly unwatchable (30 for H.263
and 45 for H.264). Our H.263 test sequences are computed us-
ing the H.263+ codec in MPlayer/MEncoder [26]. For H.263, we
considered the case of no filtering, and the use of 8 × 8 block
motion vectors and OBMC. Our H.264/AVC test sequences, with
and without loop filtering, are generated with the JVT reference
software version JM 8.2 using CABAC.

Expectation (A) should hold across all codecs and frame-types,
and Expectation (D) should hold across all possible codecs, frame-
types and spatial content. Expectation (F) is based on observations
using coastguard with and without LT prediction. The section of
coastguard we considered particularly benefits from LT prediction
because occluded areas were uncovered. Expectation (E) is de-
rived from a small-scale subjective test with 6 viewers, who were
shown coastguard using H.263 at a distance of 6 times the picture
height. Comparing I0 to P1 with d = 1 and 14, for QI ≥ 22,
all observers found I-frames to be significantly less blurry than P-
frames for d = 14 while four of six observers found I-frames to
be less blocky than P-frames with d = 1.

In addition to holding across all possible codecs and spatial
content, Expectations (B,C) should also be monotonic. For exam-
ple, as QP increases, blockiness in (B) should increase monoton-
ically. To characterize how well a blocking or blurring metric is
able to capture this monotonic increase, we use Kendall’s tau, τa

[27], which is an estimate of the probability that a pair of variables
is more likely to be correctly ordered than incorrectly ordered. For
a set of data {xi}, i = 1, ..., N , which should always increase,
Kendall’s tau is defined to be τa = (γ − δ)/(γ + δ − ε), where γ
is the number of possible pairs (xi, xj), i < j for which xi < xj

(i.e., the number of pairs correctly ordered), δ is the number of
pairs incorrectly ordered, and ε is the number of pairs for which
xi = xj . Note that γ + δ + ε = N(N − 1)/2. For completely
monotonic data, τa = 1. As pairs become incorrectly ordered, τa

decreases.

5. COMPARATIVE RESULTS

Table 1 summarizes how well each metric described in Section 3
is able to satisfy the expectations listed in Section 4. Ability to
satisfy Expectations (A,D,E,F) is indicated by “Y”, while inabil-
ity is indicated with “x”. Results for Expectations (B,C) show the
minimum value of Kendall’s τa achieved across the set of situa-
tions considered. Recall that τa = 1 means a metric completely
satisfies this expectation, while negative τa clearly indicates an in-
ability to satisfy this expectation. For Expectation (B), we consider
separately the different frame types I0 and P1.

As shown in Table 1(a), the FR similarity metrics perform well
for most expectations. In particular, PSNR and SSIM similarly
pass all tests except that they each predict foreman is better vi-
sually than coastguard. Since neither include any HVS masking,
they are unable to recognize that spatial masking conceals the per-
ceptual impact of blocking in coastguard. While PIQE-S is able
to meet Expectations (A-C), it fails for (D-F) because it is heavily
dependent on extracting edges from an image. As a result, when

method A B(I0) B(P1) C D E F

PSNR x .995 1.0 .995 Y Y Y
SSIM [15] x .995 .995 .995 Y Y Y

PIQE-S [16] Y .947 .921 .946 x x x
(a)

method A B(I0) B(P1) D E F

PIQE-B [16] x .759 .980 x Y x
BD [17] x .725 -.994 Y x x

MSDS [18] x .815 -.994 Y x x
[19] x .963 .894 Y x x
[11] x .606 .090 x x x

GBIM [13] Y .995 .741 Y x x
[12] x .968 -.798 Y x x

DCT-Step [20] x .852 .651 Y x x
PSBIM [21] Y .980 .906 x x Y

(b)
method C D E F

[22] .892 Y x x
[23] .956 Y x Y

Kurtosis [24] .591 Y x x
(c)

Table 1. Ability of each metric to satisfy Expectations (A-F). A
“x” in Columns (A,D,E,F) means metric failed expectation; “Y”
denotes satisfaction. Columns (B,C) denote Kendall’s τa charac-
terizing monotonicity. (a) Similarity, (b) Blocking, and (c) Blur-
ring metrics.

the image is compressed using an edge-attenuating filter, the edge
detector may have difficulty extracting sufficient edges.

Results for blocking metrics are given in Table 1(b). All met-
rics were designed to quantify the situation measured with Ex-
pectation (B) using I0; however, [11], BD, PIQE-B, and MSDS
are clearly weakest in this regard. Because motion compensation
moves blocking artifacts off block boundaries, most metrics have
not been designed to address Expectation (B) using P1; however,
PIQE-B, PSBIM, [19], and GBIM still perform reasonably well in
this situation. Regarding Expectation (D), it is interesting to note
that three metrics are unable to consistently measure across all QP
and d that additional filtering reduces blockiness. Only PIQE-B
is able to show (E) that blockiness increases for P-frames over I-
frames, only GBIM and PSBIM are able to show (A) coastguard is
visually less blocky than foreman, and only PSBIM is able to show
(F) that using a high-quality LT prediction reduces blockiness for
coastguard frame 141.

The blocking metrics share a number of weaknesses. First,
only four incorporate some form of HVS modeling. Second, BD
and MSDS both assume that the encoding process preserves the
inner-block structure and especially the pixel slopes. Unfortu-
nately, the experimental results indicate this assumption does not
hold for the codecs we considered. Third, many metrics appear
to discard useful information when they compute blockiness. For
example, PIQE-B and [19] use only DC coefficients on a block
and row/column level, respectively. Further, [19] employs a very
strong cutoff threshold for measuring an edge. In DCT-Step, the
simple 2-D step function model discards many coefficients. Simi-
larly, the Phase Correlation method [11] discards vital information
during spatial sub-sampling. Fourth, as pointed out in [9], many
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blocking metrics assume block artifacts appear only on 8×8 block
boundaries. However, this is generally not true in P-frames, where
blocking artifacts have also propagated from previous frames. Fi-
nally, most of these metrics average the blockiness across the im-
age. Thus, a very strong edge will be averaged with weaker edges.
On the other hand, humans are likely to perceive blockiness using
only the most visible blockiness. HVS masking is often used to
give more weight to stronger edges, but often it is not enough.

As shown by the results for blurring metrics in Table 1(c),
all are effective at showing (D), that filtering increases blurriness,
while none were able to show (E), that increasing d increases blur-
riness. Only [23] was successful with (F), the LT prediction, while
Kurtosis was the weakest with regard to Expectation (C).

None of the blurring metrics incorporates any HVS modeling.
The Kurtosis metric and [23] are similar to PIQE-S, in that they are
heavily dependent on obtaining reliable edge information. Filter-
ing during compression reduces the number of available edges in
their sample space, which decreases their statistical reliability. On
the other hand, [22] discards potentially significant information
when forming its histogram of received DCT coefficients. Since
it is based on received DCT coefficients, its performance for P-
frames degrades with heavier quantization.

6. CONCLUSIONS

Our systematic evaluation shows that the recently proposed qual-
ity metrics we consider all have some weakness in measuring the
quality of still frames from compressed video. We derive our ex-
pectations using simple subjective comparisons, and each metric
is unable to correctly rank order images for at least one of our ex-
pectations. Several metrics also prove inadequate when applied on
H.264 video, since they are designed for 8×8 DCT blocks. Kurto-
sis and Power Spectrum are particularly weak for H.264 due to its
rich blocking structure that involves blocks as irregular as 4 × 8.

The most challenging expectations for the metrics to satisfy,
as a whole, are to correctly characterize (A) the impact of spatial
content, (B) the impact of blockiness in P-frames, (E) the increased
blurriness as the distance d from the most recent I-frame increases,
and (E) the increased blockiness with increasing d. Among these,
the inability to characterize the second and fourth of these are due
to the fact that these metrics have been designed for images, and
are then applied to stills taken from video. However, because MC
propagates blocking artifacts into subsequent frames such that they
are no longer aligned on block boundaries, these impairments are
not observed by most metrics.
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