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ABSTRACT

Curvilinear synthetic aperture radar (CLSAR), which aper-
ture is formed via a curvilinear trajectory, is considered as
a more practical three-dimensional (3-D) imaging system.
The 3-D images obtained by using non-parametricmethods,
however, have little practical use because the data collected
by CLSAR is sparse in the 3-D frequency space. Some para-
metric methods have been successfully applied into CLSAR
for imaging but have expensive computational cost since
they are iteration methods. In this paper, a non-iterative
imaging (NII) algorithm is proposed. The new algorithm
estimates the range parameters of all scatterers via modern
spectrum method, and then using these range estimates and
the received data to form the two-dimensional (2-D) data
slices, from which the cross-range parameters are estimated.
Once the position (range and cross-range) estimates are ob-
tained, the radar cross section (RCS) can be calculated from
the data. Simulation results show that the new algorithm
can efficiently form the target’s 3-D image via CLSAR.

1. INTRODUCTION

By transmitting signals with large bandwidth and utilizing
high apertures in both azimuth and height, the curvilinear
synthetic aperture radar (CLSAR) has the three-dimensional
(3-D) imaging capability. Because the curvilinear aperture
is formed by any maneuvering flight in cross-range, the data
collected via CLSAR is limited on a curved face and is not
the full volume but sparse data in the 3-D frequency space.
Consequently, the image obtained via non-parametric meth-
ods has little practical use. The useful images must be re-
built by some parametric methods[1][2][3].

Recently, an efficient algorithm, LODIPS, is proposed
for CLSAR imaging system[3]. Based on the relax-
ation idea, the LODIPS algorithm extracts the scatterers
one by one, and furthermore, with considering the loose
coupling between the range and the cross-range parame-
ters, the LODIPS algorithm reduce the 3-D FFT into one-
dimensional (1-D) and two-dimensional (2-D) FFTs to ob-
tain every scatterer’s position estimate. Due to utilizing the
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lower dimensional FFTs, the LODIPS algorithm dramati-
cally reduces the computational burden.

In this paper, a non-iterative imaging algorithm, which
is referred to as NII, is presented for the spotlight mode
CLSAR. The new algorithm follows the main idea of
LODIPS, which decouples the range and cross-range pa-
rameters and estimates them in sequence. NII algorithm,
however, is not in iterative mode but in joint mode to es-
timate all range estimates at every look angle, which are
obtained by utilizing modern spectrum method, such as
MUSIC[4], ESPRIT[5], and so on. With these range es-
timates, the cross-range and complex amplitude estimates
can be estimated from the received data.

2. PROBLEM FORMULATION

For far field, small patch imaging, the data received by a
spotlight mode CLSAR, after dechirping and sampling, can
be modelled as[2]

r(n, m) =

K∑

k=1

αksk(n, m) + e(n, m) (1)

where K denotes the number of scatterers, αk is the kth

scatterer’s radar cross section (RCS), e(n, m) denotes the
noise and clutter, and

sk(n, m) = exp{jxk(τn cos θm cosφm)

+jyk(τn sin θm cosφm) + jzk(τn sin φm)} (2)

is a 3-D complex sinusoid with the frequency (xk, yk, zk),
which corresponds to the 3-D location of the kth scatterer,
τn (n = 1, · · · , N ) denotes the wavenumber, {θm, φm}
(m = 1, · · · , M ) are the look angles (the azimuth and el-
evation angles), N and M are the dimensions of available
data samples in range and cross-range, respectively. It notes
that the 3-D frequency (xk, yk, zk) is not the scatterer’s true
position but very close to it for far field imaging[2].

Our problem of interest herein is to estimate
{αk, xk, yk, zk}

K
k=1 from r(n, m), which can be achieved

by minimizing the following nonlinear least squares (NLS)
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cost function

C({αk, xk, yk, zk}
K
k=1)

=
N∑

n=1

M∑

m=1

∣∣∣∣∣r(n, m) −
K∑

k=1

αksk(n, m)

∣∣∣∣∣

2

(3)

If the noise is a zero-mean white Gaussian process, the NLS
appproach is equivalent to the maximum likelihood (ML)
method. In case the noise is colored or non-Gaussian, it
has been shown that the NLS approach can still have good
statistical estimation performance[6].

To minimize C is a highly nonlinear optimization prob-
lem. This problem, however, can be simplified by using the
data’s inherent characteristic. Based on the fact that there
is loose coupling between the range and cross-range param-
eters for far field, small patch imaging, the NII algorithm
estimates these parameters in sequence. Because the opti-
mizing dimensions is decreased, the new algorithm can re-
duce the computational complexity.

3. NII ALGORITHM

Since the varying ranges of θm and φm are very small,
cos θm ≈ 1, cosφm ≈ 1, sin θm ≈ θm and sin φm ≈ φm.
Therefore, eqn. (2) can be simplified as

sk(n, m) = ej[xk+ykθm+zkφm]τn (4)

It is evident that sk(n, m) can be considered as a 1-D sinu-
soid at the mth look angle with frequency

fk(m) = xk + ykθm + zkφm (5)

Hence, the received data r(n, m) at the mth look angle can
be considered as the sum of several 1-D sinusoids. These si-
nusoids’ frequency {f̂k(m)}K

k=1 can be estimated via MU-
SIC. Obviously, the frequency fk(m), as a function of look
angle, slightly varies around the range parameter xk . There-
fore,

x̂k =
1

M

M∑

m=1

fk(m) (6)

Hence, for the mth look angle, the value at range x̂k is cal-
culated by

dk(m) =
1

N

N∑

n=1

r(n, m) · e−jx̂kτn (7)

Substitute r(n, m) in eqn. (1) into eqn. (7),

dk(m) =

K∑

l=1

αle
jτc∆pl,k(m)Pl,k(m) + e(m) (8)

where τc = τ1 + ∆τ(N − 1)/2 with ∆τ denoting the
wavenumber step, ∆pl,k(m) = xl + ylθm + zlφm − x̂k,

Pl,k(m) =
sin(N∆τ∆pl,k/2)
N sin(∆τ∆pl,k/2) , and e(m) is the noise in

dk(m).
Assume that all scatterers can be separated at every look

angle, then Pl,k(m) ≈ 0 for l �= k, Pl,k(m) ≈ 1 for l = k,
and eqn. (8) can be rewritten as

dk(m) = αkejτc(xk−x̂k)ejτc(ykθm+zkφm) + e(m) (9)

Obviously, the data dk(m) is a 2-D sinusoid with complex
amplitude αkejτc(xk−x̂k) and 2-D frequency (yk, zk). Eqn.
(9) shows that the range error (xk − x̂k), which is constant,
only results in the ambiguity between the phase error due
to (xk − x̂k) and the phase of αk, and does not introduce
any effect in the 2-D frequency (yk, zk). Hence, the 2-D
frequency (yk, zk) can be determined exactly by

(ŷk, ẑk) = arg max
(yk,zk)

∣∣∣∣∣

M∑

m=1

dk(m)e−jτc(ykθm+zkφm)

∣∣∣∣∣

2

(10)
Substitute the obtained position estimates

{x̂k, ŷk, ẑk}
K
k=1 into eqn. (3), then minimizing the

cost function is reduced into solving the least square
problem, i.e., all amplitude estimates can be calculated by
the following equation

A = (SH
S)−1

S
H
r (11)

where

A = [α1, α2, . . . , αK ]T

S = [s1, s2, . . . , sK ]

sk = [sk(1, 1), . . . , sk(N, 1), sk(1, 2), . . . , sk(N, M)]T

r = [r(1, 1), . . . , r(N, 1), r(1, 2), . . . , r(N, M)]T

Utilizing the above non-iterative scheme, we get all initial
estimates {α̂k, x̂k, ŷk, ẑk}

K
k=1. These estimates, however,

contain some errors, which are introduced by the estimation
scheme and interference between scatterers. To minimize
these errors and get fine estimates, a local search is needed.

For refining the lth scatterer’s position estimate
(x̂l, ŷl, ẑl), we define

rl(n, m) = r(n, m) −

K∑

k=1,k �=l

α̂kŝk(n, m) (12)

where ŝk(n, m) has the same form as sk(n, m) in eqn. (2)
except that (xk, yk, zk) are replaced by (x̂k, ŷk, ẑk).

With the definition in eqn. (12), the cost function C in
eqn. (3) can be rewritten as

Cl(αl, xl, yl, zl) =
N∑

n=1

M∑

m=1

|rl(n, m) − αlsl(n, m)|2

(13)
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Minimizing Cl yields

(x̂l, ŷl, ẑl) = arg max
(xl,yl,zl)

∣∣∣∣∣

N∑

n=1

M∑

m=1

sH
l (n, m)rl(n, m)

∣∣∣∣∣

2

(14)
which can be obtained via a local search starting the initial
position estimate of the lth scatterer. After refining the lth

position estimate, all the amplitude estimates is recalculated
by using eqn. (11).

With the above preparations, the new algorithm can be
summarized as follows.

Step 1: Estimating the initial estimates.
Substep 1: Extract {f̂k(m)}M

m=1 at every look angle
via MUSIC. Using eqn. (6), calculate the range estimates
{x̂k}

K
k=1.

Substep 2: Form the 2-D sinusoids {dk(m)}K
k=1 via eqn.

(7) by using {x̂k}
K
k=1, and obtained the cross-range esti-

mates {ŷk, ẑk}
K
k=1 by using eqn. (10).

Substep 3: With all position estimates {x̂k, ŷk, ẑk}
K
k=1,

calculate the complex amplitude {α̂k}
K
k=1 from the data

r(n, m) by using eqn. (11).
Step 2: Refining the estimates.
Substep 1: Calculate the lth residual data rl(n, m) by

eqn. (12), and refine the lth scatterer’s position estimate
(x̂l, ŷl, ẑl) with rl(n, m) via a local search.

Substep 2: Redetermine the amplitude estimates
{α̂k}

K
k=1 with the position estimates {x̂k, ŷk, ẑk}

K
k=1 by us-

ing eqn. (11).
Repeat the above two substeps for l = 1, . . . , K .
Repeat the step 2 until “practical convergence”, which

is determined by checking the relative change of the cost
function C in eqn. (3) between two consecutive iterations.
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Fig. 1. Curvilinear aperture for simulation examples.

4. SIMULATION RESULTS

In this section, some simulation examples are provided to
indicate the performance of the NII algorithm. The curvi-
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Fig. 2. Original target image.

linear aperture considered herein is shown in Fig. 1, which
consists of M = 64 look angles, and the spans of azimuth
and elevation are −1.17◦ ∼ +1.17◦ and −1.0◦ ∼ +1.0◦,
respectively. Assume that there are thirteen scatterers in the
scene, which image, as shown in Fig. 2, are obtained by
FFT with using the full volume data, which is backscattered
by these scatterers.
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(a) Obtained directly by FFT
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(b) Obtained by NII

Fig. 3. Images obtained by FFT and NII.

II - 579

➡ ➡



We now first show that the NII algorithm has the 3-D
imaging capability. In case of noise free, the data collected
via curvilinear aperture is processed to obtain the target
images, as shown in Fig. 3(a) and (b), by using the non-
parametric FFT method and NII, respectively. As compared
to Fig. 2, the image in Fig. 3(b) is obviously better than that
in Fig. 3(a).
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(a) Amplitude estimate
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Fig. 4. Comparison of MSEs obtained via NII and LODIPS
with corresponding CRBs for amplitude and position esti-
mates.

As the above mentioned, the NII algorithm changes the
imaging problem into a parameter estimation problem.
Hence, Cramer-Rao bound (CRB), as an evaluation crite-
rion for parameter estimator, can be used to evaluate the
new algorithm. Assume that the additive noise is a zero-
mean white Gaussian random process, with variance δ2,
and define signal-noise-ratio (SNR) as ||αmin||

2/δ2, where
αmin is the faintest scatterer’s RCS. The position error
is defined as the distance between the estimated and true
positions of scatterer. The mean square errors (MSEs) of
the amplitude and position estimates of a scatterer obtained
via NII and LODIPS are compared with the corresponding
Cramer-Rao bounds (CRBs) in Fig. 4 as a function of SNR

(The results for the other point scatterers are similar and
hence are not shown here due to the space limitation).
The MSEs are obtained through 200 Monte-Carlo trials.
From Fig. 4, it can be noted that the MSEs of the estimates
obtained via both algorithms can reach the CRBs.

5. CONCLUSION

In this paper, the NII algorithm is proposed for 3-D image
formation via CLSAR. The new algorithm transforms the
imaging problem into the parameters estimation problem
for 3-D sinusoids, which can be performed by minimizing
the cost function. With utilizing the received data’s inherent
characteristic, the NII algorithm estimates the range, cross-
range, and RCS of scatterers in sequence. Due to employing
the lower dimensional optimization in non-iterative mode,
the new algorithm can dramatically reduces the computa-
tional cost. Simulation results show that the NII algorithm
is an efficient estimator for extracting the target’s features in
CLSAR.
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