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ABSTRACT

In this paper, we introduce an active view synthesis approach
from silhouettes. With the virtual camera moving on a properly se-
lected circular trajectory around an object of interest, we achieve
a collection of virtual views of the object, which is equivalent to
the case that the object is on a rotating turntable and captured by
a static camera whose optical axis is parallel to the turntable. We
show how to derive the virtual camera’s extrinsic parameters at
each position on the trajectory. Using the turning function dis-
tance as the silhouette similarity measurement, this approach can
be used to generate the desired pose-normalized images for recog-
nition applications.

1. INTRODUCTION

Recently, image-based rendering (IBR) has become an emerging
and competing rendering paradigm. Given an observing direction,
the IBR technique is able to synthesize the corresponding view
of an object of interest without recovering its 3D structure. With
an active virtual camera, images from different viewpoints can be
generated to give us a good understanding of the object. In this pa-
per, we show how to generate a collection of the object’s images
(turntable image collection) which are captured by a camera mov-
ing around the object, with the optical axis parallel to the plane
that the object stands on. Using a small number of widely-placed
views as input, the turntable image collection can be rendered fast
and efficiently using the image based visual hull technique. Upon
this synthesized image collection, we are able to produce a pose-
normalized video sequence by comparing the turning function dis-
tance.

In contrast to the traditional geometry-based rendering, IBR
techniques rely on view interpolation, or pixel re-projection from
source images onto the target image, with the rendering speed
independent of scene complexity [7]. It is usually required that
views must be close enough so that correspondences across these
views are easy to establish. Also correspondences must be main-
tained over many views which span large changes. An alternative
approach is based on constructing the volumes or surfaces in 3D
space that are consistent with input images [4]. These methods
generally depend on calibrated cameras.

A Visual Hull (VH) of an object is the intersection of all the
extruded cone-like shapes that result from lifting the silhouettes
in all views [8]. It is possible to reduce the computation of VH
to 2D operations since it contains only points that project onto
the silhouettes. Image Based Visual Hull (IBVH) [9] is an ef-
ficient geometrically-valid pixel reprojection method to compute
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Fig. 1. (a) An example of IBVH: the images observed from the 4
static cameras (top) and corresponding silhouette images (bottom).
(b) The rendered image corresponding to a novel view with texture
(top) and without texture (bottom) obtained with IBVH.

VH, with no need to find the wide baseline correspondence. The
algorithm is able to render a desired view of n2 pixels in O(kn2)
where k is the number of input images. Fig. 1 shows an example
of view synthesis with IBVH.

One important application for image rendering is in human
identification under variations. The varying appearances due to
different poses can make the recognition problem very challeng-
ing. Using image rendering techniques to synthesize pose-invariant
images is an appealing approach. Some promising results have
been reported for integrated gait and face recognition from multi-
ple views [11]. A strong assumption made in [11] is that the person
is walking and generally facing forward. Under this assumption,
the person’s motion trajectory is easy to estimate and the virtual
camera can be placed accordingly. This approach will not work
if the motion trajectory is hard to estimate, or not available (e.g.,
turning around). In order to attack the general motion case, we
resort to viewpoint selection technique which is rapidly becoming
a key issue in computer graphics.

The view sphere of an object is a sphere which is centered at the
object and has a fixed radius [2]. We propose to use view sphere
and the silhouette turning function distance to generate pose-normalized
views for recognition applications. By moving the virtual camera
along a properly selected circular trajectory on the view sphere,
the turntable image collection can be rendered quickly and effi-
ciently with IBVH. We derive a method to align the camera cali-
bration coordinate system and the world coordinate system if they
do not coincide each other, so that the virtual camera’s position
on the trajectory can be decided accurately. Considering the non-
rigid free-form human movement, the silhouette turning function
distance is used to select the desired viewpoint and generate the
pose-normalized views.

II - 5690-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



(a) (b)

Fig. 2. (a) The calibration coordinate system does not coincide
with the world coordinate system, so the virtual camera’s circular
trajectory should be the shaded C′ which is not parallel to the X-Z
plane. (b) With the silhouette centroid observed for the previous
position, the circle C′ can be approximated by adjusting the Y
coordinate of the virtual camera.

The remainder of this paper is organized as follows. In section
2 we present the active virtual camera positioning scheme. Sec-
tion 3 describes how to produce the pose-normalized views using
the rendered turntable image collection and the pre-built silhouette
turning functions for known viewing directions. Conclusions are
presented in section 4.

2. TURNTABLE IMAGE COLLECTION RENDERING
WITH IMAGE BASED VISUAL HULL

Assuming the virtual camera’s intrinsic parameters are same as
the given real camera, we need to know its extrinsic parameters in
order to decide its position along the designated trajectory. There
are two coordinate systems to consider: the calibration coordinate
system is the one with which the camera calibration information
is recorded for the input views, and the world coordinate system is
the one with the Y -axis perpendicular to the ground plane.

The camera calibration coordinate system is used for the virtual
camera, except that the origin is set as the 3D centroid O of the
computed VH. Apparently, this is not a static coordinate system
because the origin changes with the centroid of the VH from frame
to frame. The extrinsic parameters to be determined include the
translation vector [Tx, Ty, Tz]

T and the rotation angles [φ, β, ψ]
(pitch, yaw and roll, respectively) around the X , Y , and Z-axis
respectively.

If the calibration coordinate system coincides with the world
coordinate system, then the virtual camera’s circular motion tra-
jectory is parallel to the X-Z plane. Starting from an initial posi-
tion P (Xp, Yp, Zp), and with the view sphere setting up around O

with the radius R = ‖�P − �O‖, the virtual camera’s circular trajec-
tory is centered at (0, Yp, 0), and has the radius r =

√
R2 − Y 2

p ,
with Yp, φ and ψ not changing along the circle. Given β, X and
Z coordinates can be determined uniquely if r is fixed. Hence, θ
is the only parameter we need to control. Let ∆β be the step size
for β, Xn and Zn denote the X and Z coordinates for position n.
It is easy to derive

Xn+1 = Xn + 2rsin(∆β/2)sin α (1)

Zn+1 = Zn − 2rsin(∆β/2)cos α (2)

where α = |β| − ∆β/2 is an auxiliary angle.
When accurate calibration tools, such as the Peak Performance

calibration frame [3], are used, it often happens that the calibra-
tion coordinate system does not coincide with the world coordinate
system, but has an unknown angle ω between its Y -axis and the

Fig. 3. The synthesized turntable silhouette image collection. Top:
turning and pointing sequence taken at Keck lab. Bottom: walking
sequence collected at MIT AI lab.

world coordinate system’s Y -axis, as shown in Fig. 2(a). In this
case, if the virtual camera still moves along the circle parallel to
the X-Z plane, we can observe that the object in the collected im-
ages keeps moving upward in the first half circle and downward in
the second half. Also the x-coordinate of the object’s 2D centroid
does not remain fixed. To solve this problem, we need to align
the calibration coordinate system with the world coordinate sys-
tem. Assuming that the object stands upright on the ground plane,
ω can be estimated by solving an optimization problem, with the
object’s vertical principal axes in each input image as correspond-
ing 2D lines. Here we propose another feasible solution without
estimating ω. Let pn = (xn, yn) be the object’s 2D centroid ob-
served at position n, and ∆yn and ∆xn the change in yn and
xn from position n to position n + 1 respectively. So we have
∆yn = yn+1 − yn and ∆xn = xn+1 − xn. We try to approx-
imate the designated circle C′ with ∆yn and ∆xn observed, as
shown in Fig. 2(b). Let ∆Yn be the virtual camera’s displacement
along the Y direction from position n to position n+1. Using the
property of similar triangle we have

∆yndpy

∆Yn
=

f

R
,

∆xndpx

∆Dn
=

f

R
(3)

where dpy is the y-size per pixel, dpx is the x-size per pixel, f is
the camera’s focal length, and ∆Dn is the translation adjustment
on the circle C in order to keep xn+1 = xn. ∆Dn can be com-
pensated by adjusting β accordingly. Since ∆Dn is very small
compared to the sphere radius R, the adjusting angle ∆θ can be

approximated as ∆θ = 2arctan
∆Dn

2R
.

In order to keep the view sphere radius R constant, X and Z
coordinates have to be further adjusted based on ∆Yn. Denote
r′ =

√
R2 − (Yn + ∆Yn)2 and ∆r = |r − r′|, then ∆Xn =

∆r cos |β| and ∆Zn = ∆r sin |β|. So in addition to (1) and (2),
we have{

Xn+1 = Xn − ∆X, Zn+1 = Zn + ∆Z, if Yn · ∆Yn ≥ 0

Xn+1 = Xn + ∆X, Zn+1 = Zn − ∆Z, otherwise
(4)

The roll angle ψ also has to be modified to keep the object’s
principal axes perpendicular and parallel to the ground plane. At
position n, the eigenvector [ �ex, �ey] of the silhouette image is com-
puted and we have ψn+1 = ψn + arctan ex1/ex2.

The active virtual camera positioning algorithm can be summa-
rized as follows:

1. Choose the extrinsic parameters of the virtual camera as the
average of any two real cameras’ parameters. Usually this
is a good initial position. Select step size ∆β for β.
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2. Get the silhouette image at the current position n, and com-
pute the 2D centroid changes ∆xn and ∆yn from the sil-
houette image at the previous position. Compute the eigen-
vector [ �ex, �ey] of the current silhouette image. Compute
∆Yn and ∆Dn as in (3), then compute ∆θ with ∆Dn. Let
ψn+1 = ψn + arctan (ex1/ex2). Modify X and Z coor-
dinates using (4) with ∆Yn obtained in the previous step.

3. Move the virtual camera to the next position using (1) and
(2), and let βn+1 = βn + ∆β.

4. Repeat steps 2 through 3 until the virtual camera comes
back to the original position.

This algorithm was implemented and tested with several se-
quences. The input is the synchronized perspective 4-view sil-
houette sequences of a person, with the cameras fully calibrated.
The output is the rendered turntable image collection of the per-
son for each frame. The turning and pointing sequence was taken
at the Keck lab in University of Maryland. The person’s motion
is mainly turning motion, so the trajectory information is hard to
extract from the sequence. The top row of Fig. 3 is the result for
the pointing and turning sequence. The normal walking sequence
was collected at MIT AI lab. The trajectory information can be
estimated with VH 3D centroid coordinates as mentioned in [11].
Our algorithm also works well as shown in the bottom row of Fig.
3. In both sequences, ∆β = 0.3rad, so there are 21 positions on
the whole circle around the person.

3. DESIRED VIEW SELECTION USING SILHOUETTE
TURNING FUNCTION DISTANCE

In order to select the desired view from the turntable image collec-
tion, we need to compare the turntable images with the knowledge
base of silhouettes associated with known viewing directions. In
[5] a template matching method is proposed to estimate the human
pose from silhouettes, where a body posture is represented by the
normalized horizontal and vertical projection histograms, the me-
dian coordinate, and the major axis of its silhouette. The resulting
silhouette is compared with the projection templates using the sum
of absolute difference method to estimate the main posture. While
this method is simple and fast, it is not robust and produces some
ambiguities. Therefore a distance which can measure the similar-
ity of two silhouettes is needed. According to [1], this distance
should satisfy a number of properties, including 1) it should be
a metric, 2) it should be invariant under translation, rotation and
change-of-scale, 3) it should be reasonably easy to compute, and
4) it should match our intuition. To compare a shape A, which is
stored as a model (in our case, the knowledge base of silhouettes
associated with known viewing directions), with a shape B, which
is found to exist in an image (in our case, the turntable images),
the distance between the turning functions ΘA(s) and ΘB(s) is
an efficient measurement of the similarity.

The turning function ΘA(s) measures the angle of the coun-
terclockwise tangent as a function of the arc-length s measured
from some reference point O on A’s boundary. ΘA(s) keeps
track of the turning that takes place, increasing with left-hand turns
and decreasing with right-hand turns. The turning function mea-
sures the turning that takes place as you move along the perimeter.
Mathematically, if κ(s) is the curvature function of a curve then
Θ(s) =

∫
κ(s).

In [1], the distance function between two polygons A and B
is formally defined as the Lp distance between their two turning
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Fig. 4. The view selection result comparison for the turning and
pointing sequence, with the blue curve indicating the view selec-
tion result using the turning function distance, and the red curve
indicating the ground truth.

functions ΘA(s) and ΘB(s), minimized with respect to rotation θ
and choice of reference points t,

dp(A, B) = ( min
θ∈�,t∈[0,1]

∫ 1

0

|ΘA(s + t) − ΘB(s) + θ|pds)
1
p

= ( min
θ∈�,t∈[0,1]

DA,B
p (t, θ))

1
p ,

where DA,B
p (t, θ) =

∫ 1

0
|ΘA(s + t) − ΘB(s) + θ|pds. If the

L2 metric is used, the authors proved that the distance d2(A, B)
between two polygons A and B (with m and n vertices) can be
computed exactly in time O(mn log mn).

The turning function metric has been shown to correlate well
with human notions of shape similarity [10]. Howe [6] used both
the turning function and the Chamfer distance for silhouette lookup
for automatic pose tracking. In implementing the turning function
distance, we use the method mentioned in [10], where dynamic
programming is used to account for warpings that may exist be-
tween the query object and database object that result in stretching
and compression. It is quite possible that the matching between
the points along the border of shape A and the points along the
border of shape B is not one-to-one, but one-to-many or many-
to-one. It computes the global best match between ΘA(s) and
ΘB(s) in the sense that it pairs up each element of ΘA(s) with
an element of ΘB(s)(and vice versa), but the matching must pro-
ceed monotonically through both sets. Thus it computes two se-
quences i1, i2, . . . , ik and j1, j2, . . . , jk such that either it+1 = it
or it+1 = it + 1 (similarly for j), by normalizing the distance
between matched turning angle points:

D =
∑

t=1,2,...,k |it − jt|

The knowledge base of silhouettes consists of the turning func-
tions ΘAi(s) of the silhouettes for some canonical poses, for ex-
ample, the five standard stances in a human walk cycle. By defi-
nition, the turning function is invariant under translation and scal-
ing of the polygon Ai. Therefore normalization is not necessary
in building the knowledge base. The turning function ΘBj (s) of
the silhouette at current viewing direction is calculated and the
distance functions d2(Ai, Bj) between ΘAi(s) and ΘBj (s) are
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(a) (b)

Fig. 5. (a) The side view ground truth for the Keck lab sequence (top) and the rendered side view for the Keck lab sequence (bottom). (b)
The side view ground truth for the MIT sequence (top) and the rendered side view for the MIT sequence (bottom).

computed. In addition to the silhouette Bj at the current view-
ing direction, we can get an auxiliary silhouette Cj by placing the
virtual camera at the position where the angle around the Y -axis
has π/2 difference with the current position. Take the example
that the desired view is side view, let d2(SAi, Bj) be the turn-
ing function distance between Bj and the standard stances SAi

for the side view, and d2(FAi, Cj) be the distance between Cj

and the standard stances FAi for the frontal view, then the final
decision measurement is S(i, j) = d2(SAi, Bj) + d2(FAi, Cj).
The view with the minimal distance not only gives the side view,
but also gives the stance at which the person stands for the cur-
rent frame. With this method, the desired view is selected only
when it has a small distance in matching the side view stance and
its auxiliary silhouette has a small distance in matching the frontal
view stance at the same time. This greatly reduces the possible
ambiguities when only the side view itself is considered.

Usually there will be no abrupt change from one frame to the
next, so we do not need to generate all the virtual views around
the person for each frame. Only a small number of neighboring
positions of the selected view in the previous frame is synthesized
and compared. Experiments show that the results are good enough
while the speed is much faster compared to generate all the vir-
tual views around the person for each frame. As we can see from
Fig. 4, which shows the view selection result for the turning and
pointing sequence using the turning function distance, the selected
view follows the ground truth quite well for most of the frames.
Although some error still exists for several frames, it disappears in
the next 2-3 frames. Fig. 5 shows the virtual side views for the
turning and pointing sequence and the normal walking sequence.

4. CONCLUSIONS

We have described a pose-normalized view synthesis approach
from silhouettes. A collection of virtual images of the object can
be obtained by properly moving the virtual camera along a circu-
lar trajectory. We showed how to derive the virtual camera’s trans-
lation and rotation at each position on the trajectory. Silhouette
turning function distance is combined with active image rendering
approach to get the pose-normalized views for recognition appli-
cations.
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