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ABSTRACT

Characterization of halftone texture is important for quanti-
tative assessment of halftone quality. In this paper, we de-
velop a new framework based on directional local sequency
analysis and a filter bank structure. We decompose a halftone
image into subband images from which we can easily recon-
struct the original halftone. Based on these subband images,
we define the directional sequency spectrum which is anal-
ogous to the 2-D Fourier spectrum, and formulate several
texture measures. Three test images are used to justify these
measures.

1. INTRODUCTION

Characterization of halftone textures is challenging because
of the difficulties in modeling all aspects of the human vi-
sual system (HVS), the non-ideal behavior of the rendering
device, and the fact that a halftone texture is a very par-
ticular type of binary image with its spectral energy well-
separated from the origin. Ulichney [1] identified a spectral
property of potentially good halftone textures of constant-
tone images, and termed the characteristic blue noise. He
used the radially averaged power spectrum (RAPS) and prin-
cipal frequency to describe an ideal spectrum for dispersed-
dot halftone images. In addition, he formulated a measure
of anisotropy and used it as a criterion of goodness. His
work is based on the Fourier transform and has provided
the basis for development of a number of novel halftoning
algorithms [2].

In this paper, we propose a new framework for halftone
texture analysis based on the idea of image decomposition
according to different sequencies at a certain orientation.
From the statistics of all the subband images, we define
several characteristics to analyze halftone textures: In anal-
ogy to the 2-D power spectrum, the directional sequency
spectrum (DSS) manifests the overall spectral characteris-
tics of a given halftone. Similarly, the radially averaged di-
rectional sequency spectrum (RADSS) and the directional
asymmetry measure reveal halftone characteristics which are,

respectively, analogous to the RAPS and anisotropy formu-
lated by Ulichney [1]. Our other metrics for inhomogeneity
and aperiodicity can be found in [3].

2. THE NEW FRAMEWORK FOR HALFTONE
IMAGE DECOMPOSITION

Calculation of sequency: There are limitations of Fourier
analysis as applied to binary images. The notion of se-
quency [4][5] can overcome some of these problems. In
this paper, we define sequency as the number of 0-1 and
1-0 transitions of a given binary sequence, normalized by
Ns − 1, where Ns is the length of the sequence. Specif-
ically, let b0b1 · · · bNs−1 be a binary sequence with each
bi, i ∈ {0, · · · , Ns − 1}, taking on the value 0 or 1. Its
sequency s is computed according to

s =
1

Ns − 1

Ns−2∑
i=0

I(bi �= bi+1), (1)

where I(·) is the indicator function taking on value 1 if its
argument is true or 0 otherwise.

The quasi filter bank structure: The proposed frame-
work for texture analysis, schematically illustrated in Fig.
1, consists of many channels, each tuned to a particular an-
gle. Each angular channel represents the response of the
HVS at a certain orientation. For a given halftone image
g[m,n] at angle θi, i ∈ {0, · · · , Nd − 1}, the sequency
selection filter (SSF) decomposes g[m,n] into subband im-
ages hθi

s [m,n], s = 0, 1/(Ns − 1), · · · , 1, with each cor-
responding to a certain sequency band.

Sequency selection filter (SSF): The SSF is a 1-D non-
linear operation which processes a given binary sequence
in a way analogous to that of a 1-D linear filter. Within a
window of size Ns from the given binary sequence, the SSF
calculates the sequency by counting the number of 0 − 1
and 1 − 0 transitions according to (1). The dot addressing
method explained in [3] provides a way to perform 1-D op-
erations on a 2-D image. Therefore, we can easily apply
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Fig. 1. The proposed framework for texture analysis with
each channel performing an image decomposition accord-
ing to different sequencies at a certain angle.

the SSF to a given halftone image in different angular direc-
tions. The sequency calculation for directions other than 0◦

and 90◦ is slightly modified and also described in [3]. We
perform the SSF only at the locations of the minority pixels,
with each being treated as the center point of a length-Ns

sequence. This will yield Ns subband images. The number
Ns can be regarded as the filter length.

We assume, without loss of generality, that the pixel val-
ues of minority and majority pixels are 1 and 0, respectively.
From the SSF, we can obtain the sequency for each pixel at
the angle θi, denoted as sθi [m,n], and create the subband
images hθi

s [m,n], s = 0, 1/(Ns − 1), · · · , 1, according to

hθi
s [m,n] =

{
1, if g[m, n] = 1 and sθi

[m, n] = s,
0, otherwise.

(2)
Then, for any θi, i = 0, · · · , Nd − 1, the original halftone
g[m,n] can be easily reconstructed by superposing the sub-
band images.

We consider the number of minority pixels in each sub-
band image as the energy of the corresponding sequency
band. We can plot the energy as a function of the sequency
for each orientation. This plot is referred to as the direc-
tional sequency spectrum (DSS) Pθi(s), which can be ex-
pressed as

Pθi
(s) =

∑
m

∑
n

hθi
s [m,n]. (3)

Again, we assume that the value of the minority pixel is 1.

3. CHARACTERIZATION OF HALFTONE
TEXTURES

Based on the directional sequency spectrum Pθi(s) defined
by (3), we formulate two additional halftone characteristics
in this section.

Radially averaged directional sequency spectrum: We
average the directional sequency spectra Pθi(s) over the Nd

different orientations to yield the radially averaged direc-
tional sequency spectrum (RADSS)

P̄ (s) =
1

Nd

Nd−1∑
i=0

Pθi(s). (4)

This spectrum is analogous to the RAPS defined in [1]. The
function P̄ (s) manifests the energy distribution among dif-
ferent sequencies of a given halftone image; but it does
not provide information about directional or spatially local
structures in the halftone texture.

Directional asymmetry: We define a directional asym-
metry measure D(δ) as the average weighted energy differ-
ence between directions which differ by a certain angle. To
be precise, let δ denote the difference in the angle index over
which we wish to measure the asymmetry. We define

D(δ) =
1

NsNd

Ns−1∑
i=0

Nd−1∑
j=0

ITP

|Pθj (si) − Pθ[j+δ]Nd

(si)|
Pθj

(si) + Pθ[j+δ]Nd

(si)
.

(5)
Here, si = i/(Ns − 1); [x + y]Nd

denotes (x + y) mod
Nd so that the angle restarts from the beginning after 2π
is passed; and ITP

= I(Pθj (si) + Pθ[j+δ]Nd

(si) > TP ) is

the indicator function where TP is a predetermined thresh-
old. The indicator function is intended to prevent terms for
which the denominator is very small from unduly influenc-
ing the overall summation. The threshold TP is chosen to
be 0.2 percent of the total energy.

4. EXPERIMENTAL RESULTS

To compare our formulation with that in [1], we use three
images, shown in Fig. 2 and generated by applying, respec-
tively, dual-metric direct binary search (DBS) [6], Floyd and
Steinberg error diffusion (FSED) [7], and error-quantized
tone-dependent error diffusion (EQ-TDED) [8] to the same
constant-tone patch. For the DBS texture, we use an ini-
tial halftone generated by a 128 × 128 dispersed-dot screen
designed using DBS. For the EQ-TDED texture, the quan-
tizer reproduction levels are adjusted in such a way that the
resulting halftone image contains limit-cycle artifacts.

Figure 3 shows the corresponding power spectra for the
halftones in Fig. 2. We also show the RAPS and anisotropy
measures, respectively, in Figs. 4 and 5. Throughout this
paper, we use window size Ns = 19 and number of orien-
tations Nd = 32 for the SSF operation. This is chosen to
yield a reasonably fine granularity in the characterization of
the local structure in the images.

Directional sequency spectrum: Figure 3 also shows the
DSS for the halftone textures in Fig. 2. Here each point in
the DSS represents the sequency given by the length of a
line drawn from that point to the origin, and a scan path an-
gle θ given by the angle that the line makes with the positive
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Fig. 2. Halftone images of a constant-tone patch of absorptance level 127/255. These images are generated by (from left
to right) dual-metric direct binary search (DBS), Floyd and Steinberg error diffusion (FSED), and error-quantized tone-
dependent error diffusion (EQ-TDED) with deliberate degradation.

horizontal axis. The maximum sequency value of one cor-
responds to the distance from the center of the image to the
center of the left, right, top, or bottom edges of the image.

Comparing Figs. 2 and 3, we see that the dominant se-
quency varies very directly with the reciprocal of the mean
minority pixel spacing. This is in contrast to the Fourier
spectra which do not show the expected amount of change
in actual principal frequency. This failure of the equation for
ideal principal frequency near the midtones is well known
[9]. It is not surprising that DSS overcomes this limitation
since it is calculated directly in the spatial domain by look-
ing at inter-pixel spacings.

Radially averaged directional sequency spectrum: Fig-
ure 4 shows the RADSS of the three test images. The se-
quency where the largest peak is located plays a role analo-
gous to that of the principal frequency. We refer to this se-
quency as the principal sequency. The principal sequency
can easily be understood as the most frequently occurring
sequency of the halftone texture observed through a sliding
window and scanned from all directions. Comparing RAPS
and RADSS in Fig. 4, we see that the point of transition
from low energy to high energy in the RAPS, which defines
the actual principal frequency, is not nearly as consistent for
the DBS and EQ-TDED textures, as is the peak in the cor-
responding RADSS, which we call the principal sequency.

Directional asymmetry measure: In contrast to the RAPS
and RADSS which are based on analogous computations
with the Fourier spectrum and DSS, respectively, our mea-
sure D(δ) for directional asymmetry given by (5) is quite
different than the anisotropy measure. Whereas anisotropy
is a measure of the normalized variance in the power spec-
trum at each radial frequency ρ, D(δ) is a measure of the
normalized difference between the DSS and its δ-rotated
version, integrated over all directions and sequencies. As
shown in Fig. 5, the anisotropy does not provide as mean-
ingful a measure of asymmetry. In particular, DBS shows

much higher anisotropy than EQ-TDED. The high anisotropy
of this DBS texture is due to a residual periodicity remain-
ing from the 128 × 128 screen used to initialize the DBS
halftone, which is nonetheless imperceptible. On the other
hand, our D(δ) measure agrees very well with the visual
impression of the three textures.

5. CONCLUSION

We have developed a new framework for halftone texture
characterization that is based on the concept of sequency,
rather than frequency. We introduced the sequency selec-
tion filter (SSF) that for a given angular orientation decom-
poses the halftone image into a set of sequency bands. Us-
ing the sequency selection filter, we introduced the direc-
tional sequency spectrum (DSS) that is analogous to the
2D Fourier power spectrum. From the DSS, we can com-
pute the radially averaged directional sequency spectrum
(RADSS) and the directional asymmetry that are analogous,
respectively, to the radially averaged power spectrum and
anisotropy computed from the 2-D power spectrum.
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Fig. 4. The RAPS (top) and RADSS (bottom) of the
halftone images in Fig. 2. We use the same logarithmic
conversion equation as in Fig. 3 with K = 1 for all RAPS.
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