
DETECTABILITY AND ANNOYANCE OF SYNTHETIC BLOCKINESS, BLURRINESS,

NOISINESS, AND RINGING IN VIDEO SEQUENCES*

Mylène C. Q. Farias a, John M. Foley b, and Sanjit K. Mitra a

aDepartment of Electrical and Computer Engineering 
bDepartment of Psychology 

University of California, Santa Barbara 

Santa Barbara, CA 93106 USA 

ABSTRACT

Synthetic artifacts offer many advantages for experimental 

research on video quality because of the degree of control that 

the researchers have with respect to the amplitude, distribution, 

and mixture of artifacts. We have developed algorithms for 

synthetically generating four types of artifacts commonly found 

in digital videos: blockiness, blurriness, noisiness, and ringing. 

In this paper, we inserted these artifacts in short video sequences 

and performed a psychophysical experiment where we measured 

the probability of detection and the mean annoyance values of 

these artifacts as a function of their total squared error (TSE). 

The results show that, although the different artifacts looked 

different and affected the videos differently, there is no 

consistent difference between either their visibility thresholds or 

mid-annoyance TSE. Mid-annoyance values are positively 

correlated with the visibility threshold, and the relation can be 

described by a linear function. 

1. INTRODUCTION 

An impairment is defined as a perceived flaw introduced into an 

image or video during capture, transmission, storage, and/or 

display, as well as by any image processing algorithm (e.g. 

enhancement, compression). Most impairments are very 

complex and can be decomposed into one or more perceptual 

features or artifacts. Examples of artifacts introduced by digital 

systems are blurriness, noisiness, ringing, and blockiness [1].

Many video quality models have been proposed, but little 

work has been done on studying and characterizing the 

individual artifacts found in digital video applications [2,3].  

Psychophysical scaling experiments have shown that the overall 

annoyance of impairments increases when different artifacts are 

combined simultaneously. However, we do not yet have a good 

understanding of how annoyance and visibility depend on the 

type of artifact and video content.   

One approach for studying impairments is to work with 

synthetic artifacts that look like “real” artifacts, yet are simpler, 

purer, and easier to describe [4]. This approach is promising 

because of the degree of control it offers with respect to the 

amplitude, distribution, and mixture of different types of  

artifacts. This control makes  it possible,  for example,  to isolate 
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individual artifacts for study. We have developed algorithms for 

synthetically generating four types of artifacts commonly found 

in digital videos: blockiness, blurriness, noisiness, and ringing 

[5-7].  In this  paper, our goal  was  to  estimate  the  visibility  

and annoyance of these four synthetic artifacts. We also wanted 

to compare the visibility threshold and mid-annoyance values of 

these artifacts.  To this end, we inserted these artifacts in short 

video sequences and performed a psychophysical experiment 

where we measured the probability of detection and the mean 

annoyance values of the individual artifacts as a function of 

TSE. 

2. SYNTHETIC ARTIFACTS 

Blockiness is a distortion of the images characterized by the 

visibility of an underlying block encoding structure and is often 

caused by a coarse quantization of the spatial frequency 

components during the encoding process [1,4]. We produced 

blockiness by adding to each pixel a constant proportional to the 

difference between the average of each block and the average of 

the surrounding area. This causes each block to stand out 

creating blockiness [5].   

Blurriness is a reduction in sharpness of edges and spatial 

detail. In compressed videos blurriness is often caused by 

trading off bits to code resolution and motion [1,4]. We 

produced blurriness by applying a symmetric, two-dimensional 

Finite duration Impulse Response (FIR) low-pass filter through 

the digital frame array [5].  

Noise is defined as an undesired, uncontrolled or unpredicted 

pattern of intensity fluctuations. In every part of the video chain, 

from the source to display, the video may be impaired by 

noisiness. Sources of noisiness include electronic noise, photon 

noise, film-grain noise, and quantization noise [1,4]. We created 

noisiness by replacing the luminance value of pixels at random 

locations with a constrained random value. The color 

components were left untouched. The random location of the 

pixels to change was determined by drawing two random 

numbers, corresponding to the coordinates of the pixel. After a 

pixel location was determined, the pixel value was replaced by a 

random value. Additional pixel locations were selected until the 

desired ratio of impaired/non-impaired number of pixels is 

obtained [6].   

Ringing is fundamentally related to the Gibb’s phenomenon. 

It occurs when the quantization of individual DCT coefficients 

results in high frequency irregularities of the reconstructed 

block. Ringing manifests itself in the form of spurious 
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oscillations of the reconstructed pixel values [1,4]. The 

algorithm for synthetically generating ringing consisted of 

applying a pair of delay-complementary highpass and lowpass 

filters to the pixels of the video frame forming the edges [7].

Except for a shift, the output of this system is equal to the input,

given that the initial conditions of both filters are exactly the 

same. If we make the initial conditions different, a decaying

“noise” is introduced in the first N /2 samples.  The resulting

effect is very similar to the ringing artifact found in compressed

images, but without any blurriness or noisiness [7].

3. TEST SEQUENCE GENERATION 

To generate the test video sequences, we started by choosing a 

set of five original video sequences of assumed high quality:

‘Bus’, ‘Calendar’, ‘Cheerleader’, ‘Flower’, and ‘Hockey’. These

videos are 5 seconds long and are commonly used for video 

experiments and publicly available. The second step was to 

generate videos in which one type of artifact dominated and

produced a relatively high level of annoyance. For each original,

4 new videos were created: Xblurry, with only blurriness, Xblocky,

with only blockiness, Xringy, with only ringing, and or Xnoisy,

with only noisiness. The artifacts were roughly matched in 

annoyance. However, we found that the highest possible TSE's

for blockiness and ringing did not produce annoyance values

anywhere near as high as the highest possible TSE's for

blurriness and noisiness. Since we wanted to examine the full 

range of each artifact, the initial TSE's were higher for these 

artifacts.

Then, the test sequences ( Y ) were generated   by linearly

combining the original video with the video containing the 

individual artifact (Xblurry, Xblocky, Xringy, or Xnoisy) in different 

proportions, as given by the following equation: 

( )XXrXY I −⋅+= , (1)

where X is the original video, XI is the sequence with the artifact, 

and r is the strength parameter of the test sequence (r ≥ 0). 

Before adding them, the videos were transformed to the linear

light domain using a gamma approximation. We used 6 strength 

values for each artifact in order to determine the annoyance and 

psychometric functions. Using results of a pilot study, we chose 

values of r that covered the ranges of both the psychometric and 

the annoyance functions in so far as possible. 

The usual approach to subjective quality testing is to degrade

the whole video by a variable amount and ask the test subjects

for a quality rating [8]. Since both the type and the strength of

artifacts vary from frame to frame and region to region, this 

method cannot be used to measure the visibility and annoyance

produced by specific artifacts at specific strengths. In this work 

the artifacts were added only to isolated regions (defect zones) 

of the video clip for a short time interval [3]. The rest of the

video was left in its original state. We used three rectangular 

defect zones, each of size equivalent to approximately 1/3 of the

frame. This procedure has the advantages of making it possible

to analyze the effect of different content on the

visibility/annoyance of the impairments and of simplifying the 

subject’s task.

A total of 465 test sequences were used in this experiment (5 

originals x 4 artifacts x 3 defect zones x 6 strengths + 5

originals). Since it would be impossible to perform all these test 

conditions using only one set of subjects, we divided our 

subjects in three independent groups. Each group performed 1/3

of the set conditions (125 sequences), consisting of the all 

originals, all types of artifacts, all strength values, but different

groups of defect zones.

4. METHOD 

Our test subjects were drawn from a pool of students in the

introductory psychology class at UCSB. The students are 

thought to be relatively naive concerning video artifacts and the

associated terminology. They were asked to wear any vision

correcting devices (glasses or contacts) that they normally wear

to watch television. There were five stages to the experimental

session: instructions, training, practice, experiment, and 

interview [3, 5-7].

In the first stage, the subject was verbally given instructions.

In the training stage, we showed sample sequences to the subject

to establish the range for the strength and annoyance scales. In

the practice stage, the subject carried out 8 practice trials to

allow the responses to stabilize. At the interview stage, we asked

the subject for qualitative descriptions of the defects that were 

seen. The main experiment was performed with the set of test

sequences presented in random order. The test subject was

instructed to search each video for defective regions. After each

video was played the subject was asked two questions. The first

question was “Did you see a defect or impairment?” If the

answer was ‘no’, no further questions were asked. If the answer 

was ‘yes’, the subject was instructed to enter a positive

numerical value indicating how annoying the defect was. Any

defect half as annoying as the most annoying defect in the

training stage should be given 50, as annoying 100, twice as

annoying 200 and so forth.

5. DATA ANALYSIS 

We used the standard methods [8] for analyzing the visibility

and annoyance judgments provided by the test subjects. We first

computed the Probability of Detection (PD) and the Mean 

Annoyance Value (MAV). PD was estimated by   dividing the 

number of subjects who detected the artifact by the total number

of subjects. MAV is calculated by averaging the annoyance

scores over all observers for each video. The test sequences were

divided in test groups corresponding to same original, same 

defect zone, same artifact type, and varying strength values.

Using the probability of detection data, we estimated the 

visibility detection threshold of the artifacts. The probability as a 

function of the log(TSE) (psychometric function) is fitted using 

the Weibull function [8], which has an S-shape similar to the 

experimental data and is defined as:

( ) ( )k
xSxP ⋅−−= 21  , (2)

where P(x) is the probability of detection, x is the logarithm of 

the TSE, S is the sensitivity, and k is a constant that determines

the slope of the transition. The 50% detection threshold is 

simply xT = 1/S. Figures 1-2 show the psychometric functions 

for the videos Calendar (defect zone Right) and Flower (defect

zone Houses). Each graph contains four different curves, one for

each type of artifact. The MAV, as a function of the log(TSE)

(annoyance function), is fitted with the standard logistic function

[8]:

( ) ( )( )( )βxxy −−+= exp1100 (3)

where y is the predicted annoyance and x is the logarithm of the

TSE. The parameter x (mid-annoyance TSE) translates the 

curve  in the x-direction and  controls the steepness.
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Figure 1. Psychometric function for ‘Calendar’-Right. 

Figure 2. Psychometric function for ‘Flower’ - Houses. 

Figures 3-4 show the annoyance functions for the videos

‘Calendar’ (defect zone Right) and ‘Flower’ (defect zone 

Houses). Each graph contains four different curves, one for 

eachtype of artifact. The corresponding curves have the same

form as those for MPEG artifacts [5]. Table 1 shows the fitting 

parameters for both annoyance and psychometric functions. The

results are divided by type of artifact (blockiness, blurriness, 

noisiness or ringing) and test group.  Columns 2, 3, 6 and 7 

show the psychometric function parameters (xT and k). The 

empty spaces correspond to cases where a fit was not possible

because more than 50% of subjects detected the weakest

impairment. Columns 4, 5, 8, and 9 show the annoyance

function parameters ( x and β).

From Table 1 can be seen that the visibility threshold (xT)

and mid-annoyance ( x ) parameters vary over the different test

groups.  Figures 5 and 6 show the bar plots of the threshold and

mid-annoyance parameters average values for the different 

originals and artifact types. As can be seen from these bar plots, 

the original video seems to have a larger effect on the visibility

threshold and mid-annoyance parameters than the type of 

artifact. To confirm this hypothesis, we performed an analysis of 

variance on the parameter values to test for the main effects of 

‘original’, ‘defect region’, and ‘artifact type’. Table 2 shows the 

P values obtained from this analysis (significant effects are 

shown in bold). The ‘artifact type’ did not have a significant

effect on any of the fitting parameters. On the other hand, 

‘original video’ had a significant effect on the parameters x  and 

Figure 3. Annoyance function for ‘Calendar’- Right. 

Figure 4. Annoyance function for  ‘Flower’ - Houses. 

appearance and in how they interact with the video content,

diffe id-

the

rences between either the thresholds or m

annoyance values are not statistically significant. Moore [3] and

Farias [7] also found that the effect of artifact type on threshold

and mid-annoyance TSE was not statistically significant for 

MPEG-2 and synthetic artifacts.

We calculated the Pearson correlation [8] between xT and x

for the set of all test groups. The parameters have a positive

correlation of 0.783. In Figure 7 the values of x  are plotted 

against the values of xT for the complete set of test sequences. 

The parameters are related by the following linear expression 

x = 0.711 xT + 1.507 obtained by fitting a linear equation to the 

data (line shown in the Figure 7). Therefore, if we know the

sibility thresholds of these impairments we can estimate their 

annoyance using a simple linear relation. For the individual

artifacts, the correlation remained almost the same, except for 

blurriness. The xT and 

vi

x parameters obtained for blurriness 

have a higher correlation (0.9317) and mid-annoyance strength 

is proportional to threshold, x = 1.1325 xT. Moore [3] also 

found a positive correlation between the xT and x values and a 

proportional relation. 

6. CONCLUDING REMARKS

The goal of this study  was  to estimate the visibility and

annoyance of ss, blurriness,four synthetic artifacts: blockine

noisiness, and ringing. To this end, we inserted these artifacts in

short video sequences and performed a psychophysical

experiment where we measured the probability of detection and

the mean annoyance values of the individual artifacts. We used
xT. This analysis implies that, although the artifacts differ in

their
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standard methods to find the psychometric and annoyance

functions. The corresponding curves have the same form as has

been used for MPEG artifacts. We found that, although the

artifacts differ in their appearance and in how they interact with 

the video content, there is no consistent difference between 

either their visibility thresholds or mid-annoyance TSEs. For all

four artifacts, mid-annoyance is positively correlated with the

visibility threshold, and the relation can be described by a linear

function.

Figure 5. Bar plot of the average of threshold values (xT).

Figure 6. Bar plot of the average of mid-annoyance values ( x ).

Figure 7. x versus xT  for the data  set of all video sequences. 
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ble 1: Annoyance and psychometric functions parameters. 

est group xT k x β xT k x β

blocky noisy

BusTop 3 4. 3.9 2. 1 3.3 0.125 94 6 0.5 941 9.37 5 .27

BusMid 2.941 1 .4 0.19 - 72 0.834.97 3  - 3.

BusBot 3.846 6.04 4.1 0.22 3.125 15.97 3.54 0.26

CalenLeft 2.381 4.6 3.56 0.46 2.857 8.9 3.6 0.37

CalenMid 32.703 14.83 .84 0.43 2.439 5.63 3.87 0.44

CalenRig 2.632 9.18 3.32 0.31 3.125 9.12 3.76 0.28

CalenTop 3.448 17.16 3.77 0.18 3.030 6.25 3.87 0.33

CheerMid 3.226 22.71 3.64 0.18 3.125 12.71 4.09 0.34

CheerBot 3.448 12.01 3.95 0.33 3.704 4.04 4.67 0.43

FlowTop 2.632 6.29 3.22 0.27 -  - 3.96 0.7

FlowMid -  - 3.26 0.3 2.857 14.76 3.74 0.41

FlowBot 3.030 13.98 4 0.4 3.846 33.58 4.35 0.26

HockLeft 2.703 3.82 2.85 0.5 2.857 6.54 3.61 0.23

HockMid 2.703 10.94 3.18 0.26 2.857 7.71 3.61 0.29

HockRig 2.564 7.13 3.13 0.19 2.222 4.68 3.48 0.47

Test group xT k x β xT k x β
blurr iny ring g

BusTop 2. 1 3.2 0 4.0857 1.32 5 .15 -  - 3 0.5

BusMid 3.704 3 0.28 2.703 0.41.34 4.16 4.7 3.81

BusBot 2.778 11.57 3.21 0.17 3. 1 0571 1.56 3.68 .06

CalenLeft 03.704 16.47 3.92 0.50 3.030 9.25 3.78 .31

CalenMid 3.846 12.67 4.26 0.50 3.030 12.53 3.64 0.24

CalenRig 3.704 16.83 4.16 0.21 3.030 15.38 3.78 0.26

CalenTop 3.226 9.08 3.77 0.22 3.226 7.15 3.75 0.18

CheeMid 3.333 8.68 3.76 0.2 3.448 12.79 3.95 0.18

CheerBot 3.226 16.59 3.6 0.26 3.571 7.27 4.26 0.4

FlowTop 2.941 9.40 3.56 0.26 2.703 14.1 3.74 0.34

FlowMid 3.571 12.32 4.14 0.19 3.125 12.07 3.65 0.17

FlowBot 3.846 19.62 4.24 0.15 3.571 16.34 4.13 0.21

HockLeft 2.632 13.89 3.00 0.18 - - 3.8 0.5

HockMid 2.632 7.73 3.10 0.18 2.778 8.49 3.31 0.2

HockRig 2.500 5.80 2.96 0.18 2.128 4.17 2.8 0.33

Table 2: P e a o

e a b i p a .

values obtain d from the ANOVA an lysis n the

annoyanc nd visi ility f tting arameters (T ble 1)

x β
Annoyance

orig artif reg orig artif Reg

P 0 0.120 0.367 0.552 2 0.1840.02

S K
Visibility

orig artif reg orig Artif Reg

P 0.003 0.535 0.974 0.093 0.408 0.150
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