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ABSTRACT

A novel algorithm  that can be used to boost the performance of 

face authentication methods that utilize Fisher’s criterion is 

presented. The algorithm is applied to matching error data and 

provides a general solution for overcoming the “small sample 

size” (SSS) problem, where the lack of sufficient training 

samples causes improper estimation of a linear separation hyper-

plane between the classes. Two independent phases constitute 

the proposed method. Initially, a set of locally linear 

discriminant models is used in order to calculate discriminant 

weights in a more accurate way than the traditional linear 

discriminant analysis (LDA) methodology. Additionally, 

defective discriminant coefficients are identified and re-

estimated. The second phase defines proper combinations for 

person-specific matching scores and describes an outlier removal 

process that enhances the classification ability. Our technique 

was tested on the M2VTS and XM2VTS frontal face databases. 

Experimental results indicate that the proposed framework 

greatly improves the authentication algorithm’s performance. 

1. INTRODUCTION 

Linear discriminant analysis is an important statistical tool for 

recognition, verification, and in general classification 

applications. In many cases, however, and in particular when 

face data is used, there is insufficient data available so as to 

carry out the LDA process in a statistically proper manner. In 

face authentication systems a test face is compared against a 

reference face and a decision is made whether the test face is 

identical to the reference face (meaning the test face is a client) 

or not (meaning the test face is an impostor). In this type of 

problems, Fisher’s linear discriminant is not expected to be able 

to discriminate well between face pattern distributions that are in 

many cases highly nonlinear (i.e. they cannot be separated 

linearly), unless a sufficiently large training set is available. 

More specifically, in face recognition or authentication systems 

LDA-based approaches often suffer from the SSS problem 

where the dimensionality of the samples is larger than the 

number of available training samples [1]. In fact, when this 

problem becomes severe, traditional LDA actually degrades the 

classification performance and shows poor generalization ability. 
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In recent years, an increasing interest has developed in the 

research community in order to improve LDA-based methods 

and provide solutions for the SSS problem. The traditional 

solution to this problem is through LDA applied in a lower-

dimensional PCA subspace so as to discard the null space of the 

within-class scatter matrix of the training data set [2]. However, 

it has been shown [3] that significant discriminatory information 

is contained in the discarded space and alternative solutions have 

been sought. Specifically, in [4] a direct-LDA algorithm is 

presented, which discards the null space of the between-class 

scatter matrix, which is claimed to contain no useful 

information, rather than discard the null space of the within-class 

scatter matrix. More recently, the authors in [1] form a mixture 

of LDA models that can be used to address the high nonlinearity 

in face pattern distributions, a problem that is commonly 

encountered in complex face recognition tasks. They present a 

machine-learning technique that is able to boost an ensemble of 

weak learners slightly better than random guessing to a more 

accurate learner. 

This paper presents a framework of two independent and 

general solutions that aim to improve the performance of LDA-

based approaches. This methodology is not restricted to face 

authentication, but is able to deal with any problem that fits into 

the same formalism. In the first step, the dimensionality of the 

samples is reduced by breaking them down and creating subsets 

of feature vectors with small dimensionality, and applying 

discriminant analysis on each subset. The resulting discriminant 

weights are normalized so as to provide the overall 

discriminatory solution. This process gives direct improvements 

to the two aforementioned problems as the non-linearity between 

the data pattern distributions is now restricted while the reduced 

dimensionality also helps mend the SSS problem. Remaining 

high nonlinearities between corresponding subsets lead to a 

number of discriminant coefficients being badly estimated due to 

the small training set. These coefficients are identified and re-

estimated in an iterative fashion, if needed. In the second stage 

the set of matching scores that correspond to each person’s 

reference photos is used in a second discriminant analysis step. 

In addition, this step is complemented by an outlier removal 

process in order to produce the final verification decision that is 

a weighted version of the sorted matching scores. 

The proposed methodology was tested on two well-

established frontal face databases, M2VTS and XM2VTS. The 

experimental results are presented and analyzed in section 4 in 

order to assess the performance of the proposed methodology.  
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2. PROBLEM STATEMENT 

A widely known face verification algorithm is elastic graph 

matching [5]. The method is based on the analysis of a facial 

image region and its representation by a set of local descriptors 

(i.e. feature vectors) extracted at the nodes of a sparse grid: 

           )(,),()( 1 xxxj ff                     (1) 

where )(xif  denotes the output of a local operator applied to 

image f at the 
thi  scale or the 

thi  pair (scale, orientation), x
defines the pixel coordinates and denotes the dimensionality 

of the feature vector. The grid nodes are either evenly distributed 

over a rectangular image region or placed on certain facial 

features (e.g., nose, eyes, etc.) called fiducial points. The basic 

form of the image analysis algorithm that was used to collect the 

feature vectors j  from each face is described in [6]. Let the 

superscripts r and t denote a test and a reference person (or 

grid) respectively. The  
2L  norm between the feature vectors at 

the
thl  grid node is used as a (signal) similarity measure:  

)(),( r

l

t

llC xjxj .                    (2) 

Let
tc  be a column vector comprised by the matching errors 

between a test and a reference person at all L  grid nodes, i.e.: 

Lt CC ,,1c ,       (3) 

In order to make a decision of whether a test vector corresponds 

to a client or an impostor, the following simple distance measure 

can be used, where  is an 1L  vector of ones: 

        
trtD c),( ,      (4)  

The first phase of the algorithm that is proposed in this paper 

introduces a general LDA-based technique that is carried out in 

the training stage and finds weights for each matching error 

vector 
tc  in order to enhance the discriminatory ability of the 

distance measure. 

Both the M2VTS and XM2VTS databases, and the protocols 

they were evaluated under, allow for the final decision, of 

whether a test facial image corresponds to a client or an 

impostor, to be made by processing  different images of the 

reference face. That is, the test face is compared against all the 

images of the reference person contained in the database. As a 

result, we end up with  matching error values, or scores; 

traditionally, the final classification decision is based solely on 

the lowest error value. The second phase of the proposed 

algorithm provides an alternative score weighting method that 

improves the final classification rate significantly. The two 

methods are independent from one another and are proposed as 

general solutions for classification problems of analogous form. 

3. BOOSTING LINEAR DISCRIMINANT ANALYSIS 

Let
Cm and

Im denote the sample mean of the class of 

matching vectors 
tc that corresponds to client claims relating to 

the reference person r  (intra-class mean) and those 

corresponding to impostor claims relating to person r  (inter-

class mean), respectively. In addition, let 
C

 and 
I

 be the 

corresponding numbers of matching vectors that belong to these 

two classes and  be their sum, or the total number of 

matching vectors. Let
WS  and 

BS be the within-class and 

between-class scatter matrices, respectively [7]. Suppose that we 

would like to linearly transform the matching vectors as such:  

trrtD cw),(      (5) 

The most known and plausible criterion is to find a projection, or 

equivalently choose
rw , that maximizes the ratio of the between 

-class scatter against the within-class scatter (Fisher’s criterion): 

rWr

rBr

rJ
wSw

wSw
w )(      (6) 

For the two-class problem, as is the case of face authentication, 

Fisher’s linear discriminant, 
tr cw 0,
, which is essentially a 

specific choice of direction of the data down to one dimension, 

provides the vector that maximizes (6) and is given by: 

)(1

0, CIWr mmSw .     (7) 

3.1. Locally Linear Discriminant Analysis Model   

Our experiments revealed that the traditional Fisher’s linear 

discriminant process not only performed poorly, but also 

degraded the classification capability of the face authentication 

algorithm when training data from the M2VTS database was 

used. That is, (4) provided a much better solution than (5) after 

traditional LDA was used to determine the values of 
rw . This 

statistical malady can be attributed to the matching error vectors 

not being linearly separable and to the insufficient availability of 

mostly client matching error vectors, with respect to the 

dimensionality of each vector. Moreover, using nonlinear 

separating surfaces can lead to overtraining and thus to lower 

performance. Specifically, the number of client matching error 

vectors (
C

) for each individual that were available in the 

training set was only 6, whereas the 8 8 grid that was used set 

the dimensionality ( L ), or number of grid nodes, at 64. The 

value of 
I

while training the algorithm using M2VTS data 

was set at 210 and using XM2VTS data at 1791. All these 

numbers are compatible with the training protocols of each 

database for authentication purposes – the Brussels protocol, 

which is used and described in [6], was applied to the M2VTS 

database and Configuration I of the Lausanne protocol [8] to the 

XM2VTS database training and testing procedures. The two 

aforementioned problems are related since a larger training data 

set can help deal more efficiently with the nonlinearity problem.  

The first thing that is done is to provide better estimation to 

Fisher’s linear discriminant by redefining (7) to: 

C

C

I

IWr mmSw
1

0,
,    (8) 

so as to accommodate the prior probabilities of how well the 

mean of each class is estimated. Secondly, and for claims related 

to each reference person r , grid nodes that do not possess any 

discriminatory power are discarded – at an average 4 nodes are 

discarded. Simply, each of the L  remaining nodes must satisfy: 

      ),(),( lrlr CI mm .       (9)  

In order to give remedy to the SSS problem each matching 

vector with dimensionality L  is broken down to P  smaller 

dimensionality vectors, each one of length , where 

1C
, thus forming P  subsets. The more statistically 

independent the subsets are among one another, the better the 

discriminant analysis is expected to be. Our tests revealed that 

the optimum value for   is 4. As a result, P  separate Fisher 
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linear discriminant processes are carried out and each of the 

weight vectors produced is normalized so that the within group 

variance equals to one by applying:  

2

1

,0,,,0,,0,

'

,0, )( prpWprprpr wSwww ,     (10) 

where Pp ,,1  is the subsets’ index. This normalization 

step enables the proper merging of all weight vectors to a single 

column weight vector, 
'

0,rw , as such: 

'

,0,

'

1,0,

'

0, ,, Prrr www .    (11) 

3.2. Re-estimating the Negative Discriminant Coefficients 

By meeting condition (9), all discriminant coefficients that 

correspond to the remaining grid nodes should indicate a 

constructive contribution to the overall discriminatory process. 

Thus, and since matching, or error, data are always positive, 
'

0,rw  should be a vector of L  positive weights only. The 

exception to this is the possibility to have zero-valued weights 

that would indicate that certain grid nodes do not contribute to 

the classification process. In spite of this, it was observed that on 

an average 36.54% of the discriminant coefficients in 
0,rw  and 

6.27% of the discriminant coefficients in 
'

0,rw  were found to be 

negative when the M2VTS training set was used. Additionally, 

24.39% of the discriminant coefficients in 
0,rw  and 0.76% of 

the discriminant coefficients in 
'

0,rw  were found to be negative 

when the larger XM2VTS training set was used. The locally 

linear discriminant analysis model that was introduced in 3.1 is 

less susceptible to these occurrences as it settles the SSS 

problem. Any negative discriminant coefficients that remain in 
'

0,rw  are caused by the combination of large nonlinearities 

between the distribution patterns of corresponding subsets and 

the lack of a sufficiently large training sample space.  

By having the a-priory knowledge that negative discriminant 

coefficients are the direct result of a faulty estimation process 

and assuming that 
pQ  is the number of negative weights found 

in
'

0,rw , the following two cases are considered: 

Case 1: 5.1pQ
All negative weights are set to zero and no further processing is 

required. The factor 1.5 is used to indicate that if the number of 

values in the final subset is not equal to more than half of its full 

capacity , the corresponding linear discriminant equation 

depends on too few variables and is likely to give large 

inaccuracies to the overall discriminant solution.  

Case 2: 5.1pQ
In this case, all the grid node training data that correspond to the 

negative coefficients in 
'

0,rw  are collected and re-distributed 

into P  subsets where each subset again holds discriminant 

variables. In turn, P  separate Fisher linear discriminant 

operations are carried out by following (8) and each of the 

weight vectors produced is normalized by following (10).  

Successively, all positive weights from all P  subsets are 

collected and set as the final multipliers of 
tc , or discriminant 

coefficients. On the other hand, all negative weights are 

collected and once again tested against cases 1 and 2. This 

process is carried out in as many iterations as are required for 

Case 1 to apply.  Indicatively, it is stated that during the training 

stages of the M2VTS database 3 to 5 iterations are usually 

required when L  whereas no more than 2 iterations are 

required when is set to 4. For the latter value of , one, at 

the most, iteration is needed when processing XM2VTS data. 

3.3. Weighting the Classification Scores

The protocols that the authentication algorithm was tested under 

specified that a test person could be classified to be an impostor 

or a client by using three, 3 , different photos of the 

reference face; thus, three tests are carried out. As a result, three 

classification scores are available for each individual, i.e. 
1,rv ,

2,rv  and 
3,rv . Traditionally, the test person is classified as a 

client if the minimum value out of the three, i.e. 
1,rv , is below a 

set threshold, and as an impostor if it is above that threshold. In 

this work, training data are used once again to derive person 

specific weights for the  scores. The motive behind this 

process is that ideally all three scores should contribute to the 

final classification decision as in certain cases the impostor’s 

photo that corresponds to a minimum score may have 

accidentally - e.g. due to a particular facial expression - had 

close similarity to a certain reference photo. In such a case, the 

remaining two reference images can be used in an effort to repair 

the false classification decision. Now the problem becomes: 

d

ddr rtDvrtD
1

, ),(),(                   (12) 

Unfortunately, the training data which we can work with to 

derive these weights only provide two combinations since a total 

of 6 training client combinations are available for the 3 different 

images of each person. Thus, are forced to set 
3,rv  to zero, 

where this would be the weight that corresponds to the largest 

matching error score, and set 2  in (12). Fisher’s modified 

linear discriminant (8) is applied and the two weights are found. 

A much larger number of impostor, rather than client, 

matching scores is available in the training set of each database 

which increases the probability that some impostor images may 

randomly give a close match to a reference photo, even closer 

than some of the client images give. Whenever this happens the 

process of estimating a separation between the two classes 

degrades significantly because of the small number of client 

training matching scores, which is as many as the number of 

training samples in 3.1. Thus, an outlier removal process is 

incorporated where the minimum impostor matching scores in 

the training set of each reference person, i.e. all 
1,rv  scores that 

correspond to impostor matches, are ordered and the smallest 4% 

of these values is discarded. As a result, the linear discriminant 

process gives a more accurate separation that helps increase the 

classification performance.   

4. EXPERIMENTAL RESULTS 

The discriminant coefficient vectors w  derived by the 

processes described in 3.1 and 3.2 have been used to weigh the 

raw matching error vectors c  that are provided by the 

morphological elastic graph matching applied to frontal face 

authentication, based on the algorithm described in [6]. 

Moreover, the procedure in 3.3 was used to calculate a more 

accurate matching score for each tested individual. The training, 

evaluation and test sets of the XM2VTS database were 

processed under the Lausanne protocol. A total of 600 (3 client 

shots x 200 clients) client claim tests and 40,000 (25 impostors x 

8 shots x 200 clients) impostor claim tests were carried out for 

the evaluation set and 400 (2 client shots x 200 clients) client 

and 112,000 (70 impostors x 8 shots x 200 clients) impostor 

claims 
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Figure 1: ROC curves. A: M2VTS; B: XM2VTS – evaluation 

set; C: XM2VTS – test set.  

EER  (%)
Method

M2VTS
XM2VTS – 

Evaluation Set 

XM2VTS – 

Test Set 

EGM 6.06 7.33 8.51 

LDA 8.94 5.32 5.75 

LEGM 4.37 4.67 2.51 

LLEGM 4.17 3.90 2.46 

  Table 1: Evaluation results for each process.    

for the test set. For the M2VTS database the Brussels protocol 

was implemented that employs the ‘leave-one-out’ and ‘rotation’ 

estimates, and a total of 5,328 client claim tests and 5,328 

impostor claim tests (1 client or impostor x 36 rotations x 4 shots 

x 37 individuals) were carried out. The M2VTS data were 

normalized so that the feature vectors would have zero mean and 

unit variance. Thresholds from the training process of each 

database were used to evaluate the authentication results, except 

for the evaluation of the XM2VTS test set, where thresholds 

from the evaluation process were used, as [8] suggests. 

Let us call the combination of the morphological elastic 

graph matching, EGM, and the weighting approach that makes 

up for the first phase of the proposed algorithm, as is described 

in Subsections 3.1 and 3.2, as LEGM. Moreover, let LLEGM be 

the second phase of the algorithm that is applied on LEGM and 

is described in Subsection 3.3. In order to evaluate the 

performance of these methods the False Acceptance (FAR) and 

False Rejection (FRR) rate measures are used. Figure 1-A shows 

a critical region of the ROC curves for the raw EGM data using 

(4), classical LDA (7) applied on the raw EGM data, LEGM and 

LLEGM evaluated on the M2VTS database. Figure 1-B shows 

the same corresponding ROC curves when the algorithms were 

evaluated on the XM2VTS evaluation set and Figure 1-C the 

corresponding ones for the XM2VTS test set. Results are 

presented in logarithmic scales. In addition, Table 1 shows the 

equal error rates (EER) for each algorithm, a common face 

authentication evaluation measure that is specified as the point 

where FAR and FRR are identical.  

When M2VTS data is used, the traditional LDA algorithm 

degrades the classification rate, having a poor generalization 

ability which stems from the largely inadequate, in terms of size, 

training set that was available. The proposed algorithm provides 

the most dramatic improvement to the XM2VTS test set 

experiments – the outlier removal process was bypassed on this 

specific set as it slightly weakened the performance. 

Furthermore, the evaluation tests on the two databases show that 

for both FAR and FRR, LEGM is indisputably a better performer 

than either EGM or LDA while LLEGM almost always provides 

additional improvement to the classification ability of LEGM.  

5. CONCLUSION 

A novel methodology is proposed in this paper that provides 

general solutions for LDA-based algorithms that encounter 

problems relating to high nonlinearity between the data pattern 

distributions, small training sets and to the SSS problem in 

particular. This methodology was tested on two well-established 

databases under their standard protocols for evaluating face 

authentication algorithms. Results indicate that the processes 

described in this paper boost the performance of the 

authentication algorithm significantly (31.2%, 46.8% and 71.1% 

drop of the EER rate in the three experimental sets). It is 

anticipated that the performance of other LDA variants may be 

enhanced by utilizing processes that stem from this framework.
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