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ABSTRACT

Hiding data in curves can be achieved by parameterizing a
curve using the B-spline model and adding spread spectrum
sequences in B-spline control points. In this paper, we pro-
pose an iterative alignment-minimization algorithm to per-
form curve registration and deal with the non-uniqueness
of B-spline control points. We demonstrate through experi-
ments the robustness of our method against various attacks
such as collusion, geometric transformation, and printing-
and-scanning. We also show the feasibility of our method
for fingerprinting topographic maps and detecting finger-
prints from printed copies.

1. INTRODUCTION

Curve is one of the major components appearing in maps,
drawings and signatures. A huge amount of curve-based
documents are being brought to the digital domain owing
to the popularity of scanning devices and pen-based devices
(such as the TabletPC). Digital maps and drawings are also
generated directly by various computer programs such as
map-making software and CAD systems. Having the capa-
bility of hiding digital watermarks or other secondary data
in curves can facilitate digital rights management of impor-
tant documents in government, military, intelligence, and
commercial operations. For example, trace-and-track ca-
pabilities can be provided through invisibly embedding a
unique ID, referred to as a digital fingerprint, to each copy
of a document before distributing to users [1].

As a forensic mechanism to deter information leakage
and to trace traitors, digital fingerprint must be difficult to
remove. For maps and other visual documents, the finger-
print has to be embedded in a robust way against common
processing and malicious attacks. Some examples include
collusion, where several users combine information from
different copies to generate a new copy in which the original
fingerprints are removed or attenuated [1]; geometric trans-
formations such as rotation, scaling, and translation (RST);
and D/A-A/D conversions such as printing-and-scanning.

The curve-based documents, such as maps and hand-
written notes, can be represented as binary bitmap images
(raster representation) or as a set of vectors. In the existing
data embedding works for binary images [2][3], the fragility
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of the embedding and the reliance on precise sampling of
pixels for correct decoding pose challenges in surviving ma-
licious removal in fingerprinting applications. As for wa-
termarking vector graphics, vertices are perturbed through
Fourier descriptors of polygonal lines [4] or spectral analy-
sis of mesh models [5] to embed copyright marks. However,
the embedding in [4] introduces visible distortions, and the
approach in [5] has high complexity resulting from mesh
spectral analysis.

In our previous work [6], we have proposed a new data
hiding technique for curves by identifying and manipulating
curve parameters. In particular, a set of control points from
the B-spline model forms a compact collection of salient
features representing the shape of curve. In such a fea-
ture domain, we add mutually independent, noise-like se-
quences as digital fingerprints to the coordinates of the con-
trol points. This additive spread spectrum embedding and
the associated correlation based detection generally provide
a good tradeoff between imperceptibility and robustness.

To determine which fingerprint sequence(s) are present
in a test curve, we first need to perform registration using
the original unmarked curve that is commonly available to a
detector in fingerprinting applications [1][7]. The affine in-
variance property of B-splines can facilitate automatic curve
registration. Meanwhile, as a curve can be approximated by
different sets of B-spline control points, we propose an it-
erative alignment-minimization (IAM) algorithm to simul-
taneously align the curves and identify the corresponding
control points. Through the B-spline based data embedding
and detection plus the proposed IAM algorithm, we are ca-
pable of building robust curve fingerprinting systems that
can sustain a number of challenging attacks such as collu-
sion, geometric transformations, and printing-and-scanning.

The paper is organized as follows. Section 2 briefly re-
views the B-spline based data hiding in curves. Section 3
details the proposed iterative alignment-minimization algo-
rithm for robust fingerprint detection. Experimental results
on fingerprinting topographic maps are presented in Sec-
tion 4 and conclusions are drawn in Section 5.

2. B-SPLINE BASED CURVE FINGERPRINTING

B-splines are piecewise polynomial functions that provide
local approximations of curves using a small number of pa-
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rameters known as the control points [8]. Let {p(t)} denote
a curve, where p(t) = (px(t), py(t)) and t is a continuous
time variable. Its B-spline approximation can be written as

p[B](t) =
n∑

i=0

ciBi,k(t), (1)

where ci = (cxi
, cyi

) is the ith control point, and Bi,k(t) is
a corresponding kth order B-spline blending function.

Given a set of samples on the curve, finding a set of
control points for its B-spline approximation that minimizes
the approximation error to the original curve can be formu-
lated as a least-squares problem. Representing coordinates
of m+1 samples as a (m+1)×2 matrix P � (px,py) and
coordinates of n + 1 control points as a (n + 1) × 2 matrix
C � (cx, cy), we can write the problem with its solution as{

px ≈ Bcx

py ≈ Bcy
=⇒

{
cx = B†px

cy = B†py
, (2)

where {B}ji is the value of the B-spline blending function
Bi,k(t) evaluated at t = sj , the time value of the jth sample,
and † denotes the pseudo inverse of a matrix.

To apply spread spectrum embedding on a curve, we add
a scaled version of the fingerprint sequence (wx,wy) to the
coordinates of the set of control points obtained before and
get a set of marked control points (cx +αwx, cy +αwy). A
fingerprinted curve can then be constructed by the B-spline
model (equation (1)) using these marked control points.

To detect the fingerprint sequence(s) embedded in a test
curve, assuming we have a set of test sample points given
by (p̃x, p̃y) = (B(cx + αwx),B(cy +αwy)), we can ex-
tract the test control points (c̃x, c̃y) by applying (p̃x, p̃y)
to equation (2). Then we compute the difference between
the coordinates of the test and the original control points
to arrive at an estimated fingerprint sequence (w̃x, w̃y) =
( c̃x−cx

α ,
c̃y−cy

α ). We further evaluate the similarity between
this estimated fingerprint sequence and each fingerprint se-
quence in our database through a correlation-based Z statis-
tic. If the similarity is higher than a threshold (usually set
around 3 to 6 for Z statistics), with high probability the cor-
responding fingerprint sequence in the database is present
in the test curve, allowing us to trace the test curve to a spe-
cific user. The details on the basic embedding and detection
can be found in [6].

3. ROBUST FINGERPRINT DETECTION

The set of test sample points (p̃x, p̃y) assumed in Section
2 may not always be available, especially when a test curve
undergoes geometric transformations, and/or is scanned from
a printed hard copy. Preceding the basic fingerprint detec-
tion module there must be a pre-processing registration step
to align the test curve with the original curve. In order to
improve accuracy and efficiency of the registration, an au-
tomatic registration is desirable.

Another issue related to the assumed test sample points
is the inherent non-uniqueness of B-spline control points,
which refers to the fact that a curve can be well approx-
imated by different sets of B-spline control points. With
a different choice of the sample points, we may induce a
quite different set of control points that can still describe
the same curve accurately. Therefore, if we can not find the
set of test control points corresponding to the one used in
the embedding, we may not be able to detect the fingerprint
sequence. Considering the one-to-one relationship between
sample points (including their time values {sj}) and con-
trol points, we try to find the set of sample points on a test
curve that corresponds to the set of sample points used in the
embedding. We shall refer to this problem as the point cor-
respondence problem. As we shall see, the non-uniqueness
issue of B-spline control points can be addressed through
finding the point correspondence.

3.1. Problem Formulation

We now formulate the curve registration and point corre-
spondence problem in the context of fingerprint detection.

We use “View-I” to refer to the geometric setup of the
original unmarked curve and “View-II” the setup of the test
curve. Thus we can register these two curves by transform-
ing the test curve from “View-II” to “View-I”, or the original
curve from “View-I” to “View-II”. We focus on registration
under affine transformations, which can represent combina-
tions of scaling, rotation, translation, and shearing.

We call two points (x, y) and (x̃, ỹ) affine related if⎡
⎣ x̃

ỹ
1

⎤
⎦ =

⎡
⎣ a11 a12 a13

a21 a22 a23

0 0 1

⎤
⎦

⎡
⎣ x

y
1

⎤
⎦ , (3)

where {aij} are parameters representing the collective ef-
fect of scaling, rotation, translation, and shearing. These
transform parameters can be represented by two column
vectors ax = [a11 a12 a13]T and ay = [a21 a22 a23]T .
Similarly, the inverse transform can be represented by⎡
⎣ x

y
1

⎤
⎦=

⎡
⎣ aT

x

aT
y

0 0 1

⎤
⎦
−1 ⎡

⎣ x̃
ỹ
1

⎤
⎦ �

⎡
⎣ gT

x

gT
y

0 0 1

⎤
⎦

⎡
⎣ x̃

ỹ
1

⎤
⎦ . (4)

The original curve available to the fingerprint detector
can be a raster curve or a vector curve. The detector also
knows the set of original sample points (px,py) that is used
for estimating the set of control points upon which spread
spectrum embedding is applied. The test curve can be a
vector curve with sampled points (ṽx, ṽy) or a raster curve
with pixel coordinates (r̃x, r̃y). Without the set of test sam-
ple points (p̃x, p̃y) assumed in Section 2, both transform
parameters for curve registration and the point correspon-
dence must be estimated in order to locate the fingerprinted
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control points successfully. As a vector curve can be ren-
dered as a raster curve by interpolation, we consider that the
original and the test curves are represented in raster format
and formulate the problem as:

Given an original raster curve with a set of sample points
(px,py) and a test raster curve (r̃x, r̃y), we register the test
curve with the original curve and extract the control points
of the test curve. Both transform parameters (ax,ay), or
equivalently (gx,gy), and a set of sample points (p̃x, p̃y)
corresponding to the one used in the fingerprint embedding
must be found from the test curve.

3.2. Iterative Alignment-Minimization (IAM) Algorithm

Taking an existing curve alignment method [9] as a build-
ing block, we propose an Iterative Alignment-Minimization
(IAM) algorithm that can perform curve registration and
solve the point correspondence problem simultaneously. The
IAM algorithm consists of three main steps.

1) Initial Estimation of Sample Points on Test Curve:

We initialize the sample points (p̃(1)
x , p̃(1)

y ) on the test
curve using the following simple estimator. Let N and Ñ be
the number of points on the original and the test raster curve,
respectively. From the known indices J = [j0, j1, j2, . . . , jm]
of the original curve’s m + 1 sample points, where j0 <
j1 < j2 < . . . < jm are integers ranging from 0 to N − 1,
we estimate the indices of the test curve’s m + 1 sample

points by J̃ = round
(

Ñ−1
N−1 · J

)
. Using this estimated in-

dex vector J̃, we identify the corresponding sample points
from the test curve and take them as the initial estimate.

2) Curve Alignment with the Estimated Sample Points:

Given the estimated test sample points (p̃(i)
x , p̃(i)

y ) in
the ith iteration, we apply the curve alignment method in
[9] to estimate transform parameters and control points of
the test curve. More specifically, let the transform param-
eters from View-I (the original curve) to View-II (the test
curve) be (a(i)

x ,a(i)
y ). The estimated sample points on the

test curve can be transformed back to View-I by (g(i)
x ,g(i)

y ).
We then fit these transformed test sample points as well as
the original sample points with a single B-spline curve (re-
ferred to as a “super-curve” in [9]) and search for both the
transform parameters (ĝ(i)

x , ĝ(i)
y ) and the B-spline control

points (ĉ(i)
x , ĉ(i)

y ) to minimize the fitting error∥∥∥∥
[

B
B

]̂
c(i)

x −
[

px

P̃(i)ĝ(i)
x

]∥∥∥∥
2

+
∥∥∥∥
[

B
B

]̂
c(i)

y −
[

py

P̃(i)ĝ(i)
y

]∥∥∥∥
2

,

(5)

where P̃(i) �
= [ p̃(i)

x p̃(i)
y 1 ] and 1 is a column vec-

tor with all 1′s. The partial derivatives of the fitting error
function with respect to ĝ(i)

x , ĝ(i)
y , ĉ(i)

x , and ĉ(i)
y being zero

is the necessary condition of the solution to this optimiza-
tion problem. Thus we obtain an estimate of the transform
parameters and the B-spline control points as{

ĝ(i)
x = C(i)D(i)px, ĝ(i)

y = C(i)D(i)py

ĉ(i)
x = D(i)px, ĉ(i)

y = D(i)py

,

where

⎧⎪⎨
⎪⎩

C(i) �
=

(
P̃(i)T P̃(i)

)†
P̃(i)T B

D(i) �
=

(
2BT B − BT P̃(i)C(i)

)†
BT

. (6)

The estimated control points (ĉ(i)
x , ĉ(i)

y ) can be used to es-
timate the embedded fingerprint sequence and further com-
pute the detection statistic Z(i), as described in Section 2.

3) Refinement of Sample Point Estimation on Test Curve:
Given the estimated transform parameters (ĝ(i)

x , ĝ(i)
y ),

we align the test raster curve (r̃x, r̃y) with the original curve
by transforming it to View-I:{

r̃(i)
x,I = [̃rx r̃y 1] ĝ(i)

x

r̃(i)
y,I = [̃rx r̃y 1] ĝ(i)

y

. (7)

As the fingerprinted sample points (B(cx + αwx),B(cy +
αwy)) are located at the neighborhood of their correspond-
ing unmarked version (Bcx,Bcy), we apply the nearest
neighbor rule to re-estimate the test curve’s sample points.
More specifically, for each point of (Bcx,Bcy), we find its
closest point from the aligned test raster curve and denote it
as (p̃(i+1)

x,I , p̃(i+1)
y,I ). These nearest neighbors form a refined

estimate of the test sample points in View-I and are then
transformed with parameters (â(i)

x , â(i)
y ) back to View-II as

a new estimate of the test sample points:⎧⎨
⎩

p̃(i+1)
x =

[
p̃(i+1)

x,I p̃(i+1)
y,I 1

]
â(i)

x

p̃(i+1)
y =

[
p̃(i+1)

x,I p̃(i+1)
y,I 1

]
â(i)

y

. (8)

After this update, we increase i and go back to Step 2.
The iteration will continue until convergence or for an em-
pirically determined number of times. A total of 15 rounds
of iterations are used in our experiments.

3.3. Detection Example and Robustness Analysis

We present a detection example employing the proposed
IAM algorithm on a curve taken from a topographic map.
Shown in Figure 1(a) are the six estimated transform pa-
rameters after each iteration, showing an accurate curve reg-
istration. Upon convergence, we use the estimated control
points to perform detection with the fingerprint involved.
The high fingerprint detection statistic value shown in Fig-
ure 1(b) suggests the positive identification of the correct
fingerprint.

With good estimation of affine transform parameters,
the IAM algorithm is resilient to combinations of scaling,
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Fig. 1. Detection example using the IAM algorithm: a) es-
timated transform parameters; c) detection statistics.

rotation, translation, and shearing. The explicit estimation
of point correspondence provides resilience against vector-
raster conversion. Along with the robustness from the spread
spectrum embedding in B-spline control points, our method
can resist a number of challenging attacks and distortions.

4. EXPERIMENTAL RESULTS

We now present experimental results of our approach in the
context of tracing and tracking topographic maps.

Fingerprinted Topographic Maps Taking a 1100×1100
topographic vector map from http://www.ablesw.com as the
original map, we mark nine curves that are sufficiently long
and a total of 1331 control points are used to carry the fin-
gerprint. We overlay in Figure 2(a) these nine original and
marked curves using solid lines and dotted lines, respec-
tively. To help illustrate the fidelity of our method, we en-
large a portion of the overlaid image in Figure 2(b). We
can see that the fingerprinted map preserves the geospatial
information in the original map up to a high precision.

Resilience to Vector-Raster Conversion and Affine Trans-
formation We now examine the resilience to vector-raster
conversion coupled with possible affine transformation. A
fingerprinted vector map is first rendered as a 1100 × 1100
image and then transformed by 10-degree rotation, 80% and
140% scaling in X and Y direction, respectively, and 10-
and 20-pixel translation in X and Y direction, respectively.
We apply the proposed IAM algorithm to estimate the trans-
form parameters and get a Z detection statistic of 20.84 with
the fingerprint involved. This suggests that the embedded
fingerprint is identified with high confidence.

Resilience to Collusion and Printing-and-Scanning To
show the robustness of our approach against the combina-
tional attack of collusion and printing-and-scanning, we first
generate a colluded map by averaging coordinates of the
control points from four users’ fingerprinted maps, then ren-
der it and print it out using a HP laser printer, and finally
scan back as a binary image by a Canon scanner with 360dpi
resolution. Preprocessing before detection includes a thin-
ning operation to extract one-pixel wide skeletons from the

scanned curves that are usually several-pixel wide after high
resolution scanning. By using the proposed IAM algorithm,
we get Z statistics of 10.54, 11.74, 10.67, 6.93 for the four
colluders, indicating that the embedded fingerprints for all
the four colluders survive this combinational attack thus the
sources of leakage for this map can be identified.
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Fig. 2. Fingerprinting maps: (a) original and fingerprinted
curves overlaid with each other; (b) enlarged difference.

5. CONCLUSIONS

Based on our new data hiding method for curves, we have
proposed an iterative alignment-minimization algorithm to
allow for robust fingerprint detection under unknown geo-
metric transformations and in absence of explicit point cor-
respondence. We have demonstrated the robustness of our
method against various challenging attacks.
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