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ABSTRACT

In this contribution an algorithm to estimate the cell den-
sity (cell count) from a still intensity image captured by an
in-situ microscope directly from inside of a bioreactor is in-
vestigated. In comparison with other algorithms, ours has
the advantage that it allows a reliable cell density estima-
tion even though the cells build clusters in the scene. First,
image regions containing at least one cell are segmented by
applying a Maximum-Likelihood Thresholding technique.
Then, the cell density inside of each segmented region is es-
timated by maximizing the variance of the circular Hough
transform of the edges inside of it. The edges are extracted
by applying the Smallest Univalue Segment Assimilating
Nucleus Algorithm (SUSAN). The total cell density is the
sum of the cell densities estimated inside of the segmented
regions. The proposed algorithm has been implemented and
applied to thousands of real images of cultures of mam-
malian Baby Hamster Kidney cells (BHK cells) captured
by an in-situ microscope. The average of the percentage of
the absolute cell density estimation error was �����. The
estimates are similar to those obtained with current off-the-
shelf cell density monitoring instruments for cultures up to
cell densities of ����� cells/mL

1. INTRODUCTION

The online estimation of the cell density (cell count) inside
of a bioreactor is an important issue for reliable control of a
bioprocess. By the current off-the-shelf cell density moni-
toring instruments, the cell density is estimated from turbid-
ity, conductivity, optical density or fluorescense measure-
ments [1, 2]. However, a continuous re-calibration of these
instruments is required due to sensors drift, changes in the
physical or chemical environment, etc. For re-calibration,
a comparison of the instruments results with those obtained
by offline techniques, usually by counting the cells using a
hemocytometer and a microscope, is required. Thus, the op-
erator intervention and the risk of contaminating the culture
are very high. In order to avoid those problems an in-situ
microscope is being developed [3, 4, 5, 6].

An in-situ microscope delivers online intensity images
of cells in a defined volume inside of a bioreactor. The cell
density is estimated from the intensity video signal by im-
age processing algorithms with minimal operator interven-
tion and without the risk of contaminating the culture. For
cell density estimation, first, the local intensity variance at
each pixel position of the current intensity image is com-
puted. Then, the resulted variance image is segmented into
background and regions containing just one cell. For seg-
mentation a Maximum-Likelihood thresholding algorithm
is applied [7]. The cell density is estimated as the quotient
between the number of segmented regions and the volume
of the scene. The volume of the scene is supposed to be
known.

The cell density estimation algorithm described above
fails when the cells build clusters in the scene because the
Maximum-Likelihood thresholding algorithm fails finding
regions with just one cell when the cells get close together.
In this contribution, a new approach for cell density estima-
tion is presented that allows a reliable cell density estima-
tion even though there are clusters in the scene. The cell
density estimation will be based on a maximization of the
variance of the circle hough transform of the edges of the
intensity image assuming that the cells build clusters only
along a plane parallel to the camera plane.

The proposed cell density estimation algorithm will be
implemented and a number of experiments on thousands of
real intensity images of cultures of mammalian Baby Ham-
ster Kidney cells (BHK cells) captured by an in-situ micro-
scope will be performed to assess its accuracy, reliability
and limitations for cell density estimation.

This paper is organized as follows. In section 2, the
in-situ microscope is described. In section 3, the proposed
cell density estimation algorithm is described. In section 4,
some experimental results with real images are presented.
In section 5, a brief summary and the conclusions are given.

2. IN-SITU MICROSCOPE

An in-situ microscope allows in-line capture of intensity im-
ages of cells directly inside of a bioreactor during a biopro-
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Fig. 1. In-situ microscope.

cess with minimal operator intervention (see Fig. 1). The in-
situ microscope fits into a bioreactor’s standard 25mm side
port and once installed it can be retracted for cleaning the
sample zone inside the reactor without interruption of the
process or risking contamination. The sampling zone en-
closes a defined volume of culture that represents the scene
that will be captured. It consists of two sapphire windows
that work as slide and cover slip of a standard light micro-
scope. The sampling zone stays inside the bioreactor during
the entire cultivation process and does not enclose a sample
completely, but allows a continuous flow of cells through
it. The height of the sampling zone is set by the control
programm and can be adjusted during the cultivation to ac-
commodate a wide range of change in cell density.

For image capture a progressive scan CCD video camera
with an exposure time of 0.5 ms is used. The analog video
signal is digitalized by a frame grabber. Image processing
algorithms estimate process relevant information like cell
density from each digitalized intensity image.

For yeast cultivations achromatic objectives with a 20-
fold magnification (overall magnification 400-fold) and nu-
merical aperture of 0.4 are used. For mammalian cell cul-
tivations, achromatic objectives with 4-fold magnification
(overall magnification 80-fold) and a numerical aperture of
0.1 are used.

3. CELL DENSITY ESTIMATION ALGORITHM

In some cultivation processes the cells get close together
and build clusters (see Fig. 2). The current cell density es-
timation algorithms found in the professional literature for
in-situ microscopy fails counting cells inside of clusters. In

Fig. 2. Intensity image � of BHK-cells.

Fig. 3. Edge image �.

following, a new cell density estimation algorithm will be
described that allows reliable estimates even though there
are clusters in the scene.

First, an intensity image � of the scene is captured (see
Fig. 2). Then, the edges of the intensity image are com-
puted by applying the Smallest Univalue Segment Assimi-
lating Nucleus Algorithm (SUSAN) [8]. The resulted image
is called edge image � (see Fig. 3). In the next step, the lo-
cal intensity variance at each pixel position of the intensity
image is computed. The resulted image is called variance
image � (see Fig. 4). Then, the variance image is seg-
mented into background and clusters. A cluster is defined
here as an image region with one or more cells. For seg-
mentation a Maximum-Likelihood thresholding algorithm
is applied [7]. The resulted image is called binary image �
(see Fig. 5). The binary image is black on the background
and white on the clusters. In the next step, isolated white
points are eliminated from the binary image by applying a
5X5 median filter. Then, the remaining� clusters are num-
bered by applying a recursive labeling algorithm. Clusters
with small areas are also eliminated. The resulted image is
called labeled image � (see Fig. 6).

In the next step, the cells inside each one of the remain-
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Fig. 4. Variance image � .

Fig. 5. Binary image �.

Fig. 6. Labeled image �.

ing � clusters, � � ����, are counted. To this end, the
Hough transform for circles ���� of known radius � is ap-
plied to the edges�� inside of each cluster �. The edges are
taken from the previously computed edge image�. Assum-
ing that the cells inside of the cluster � are round, the radius
	� which maximizes the variance of the Hough transform

������� is supposed to be the average cell radius inside of
the cluster �:


���	���
� � 
������� � � � �� �� ��� (1)

Assuming that the cells build clusters only along a plane
parallel to the camera plane, the cell density in the cluster �
is estimated as the quotient between the area of the cluster
� and the area of a circle with radius 	�:

�� �
�

�	�
�
� �� (2)

where �� is the cell density in the cluster �, � � �������
and � is a calibration factor that is used to compensate the
influence of the segmentation errors. This because the seg-
mented clusters are always bigger than the real ones. Here,
the value of � is experimentally set to ��	
� in all exper-
iments. Fig. 7 depicts on each cluster the estimated cell
density overlapped to the original image. Finally, the cell
density of the intensity image � is estimated as follows:

� �

��

���

��� (3)

4. EXPERIMENTAL RESULTS

We have implemented the cell density estimation algorithm
described in this contribution and performed a number of
experiments on real cultivation data to assess its estima-
tion error, reliability and limitations for cell density esti-
mation. The data represents thousands of real intensity im-
ages (512x510 ����) captured by an in-situ microscope de-
picting clusters of mammalian Baby Hamster Kidney cells
(BHK-cells). The experiment was performed on a Pentium
IV (3.06Gz) laptop with 0.5 GB RAM. The average of the
processing time per image was 15.88 s.

The Fig. 2 depicts one of the intensity images used in
the experiments. Fig. 7 depicts the estimated cell density on
each cluster overlapped to the original intensity image. The
total cell density was 402 cells.

To assess the estimation error, the cell density of 11 ran-
domly selected images was determined by counting man-
ually. Then, the estimated cell density of each image was
comparedwith that obtained countingmanually (see Fig. 8).
The resulted absolute error was 31.36 � 7.36 cells and the
average of the percentage absolute error was 
��	�.

To assess the reliability and limitations of the algorithm,
it has been applied to complete cultures of BHK-cells (ap-
proximated 28 thousand images each) and the cell density
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Fig. 7. Cell density results overlapped to the original image.
Each number represents the estimated cell density (number
of cells) in each cluster. The total cell density was for this
image 402 cells.

estimates compared with those obtained with current off-
the-shelf cell density monitoring instruments. The compar-
ison shows similar results for cultures up to cell densities
of ����� cells/mL. For higher cell concentrations the es-
timated cell density is less than that obtained with current
off-the-shelf cell density monitoring instruments. We be-
lieve that this difference is because in the real world the
cells build clusters in the three-dimensional space and not
only along a plane parallel to the camera plane as we sup-
pose in our current approach. For higher cell concentrations
the three-dimensional shape of the cell clusters must also be
estimated and taking into account for cell density estima-
tion.

5. SUMMARY AND CONCLUSIONS

In this contribution a new algorithm for cell density esti-
mation for in-situ microscopy is presented. In comparison
with other algorithms our has the advantage that it allows a
reliable cell density estimation even though the cells build
clusters in the scene. The average of the percentage of the
absolute cell density estimation error was �����. The es-
timates are similar to those obtained with current off-the-
shelf cell density monitoring instruments for cultures up to
cell densities of ����� cells/mL. For higher cell concentra-
tions the three-dimensional shape of the cell clusters must
also be estimated and taking into account for cell density
estimation.
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Fig. 8. Manually determined cell density (solid line) and
automatically estimated cell density (dashdot line).
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