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ABSTRACT

We develop principal components analysis for the optimal
SNR phased-array magnetic resonance (MR) image recom-
bination. As shown in our analysis, we can achieve the best
possible SNR in both weak-noise and noisy cases, without
needing to estimate the coil sensitivities or to remove noise
effects using polynomial fitting or filtering. We provide both
analysis as well as reconstruction techniques. Our results
shed light on the performance of the phased-array image
combination and give new insight into good image forma-
tion schemes.

1. INTRODUCTION

Phased-array magnetic resonance imaging (MRI) techniques
have been developed for more than a decade, where a num-
ber of radio antennas, or coils, are used to receive and com-
bine signals [1]. MR imaging systems with up to 16 receiver
coils have been designed [2]. As a result, the imaging speed
as well as image quality can be greatly improved, which
benefits many MRI applications such as imaging and moni-
toring time-varying processes, and functional MRI. Because
the coil sensitivities are difficult to model, especially for high
field MRI, image reconstruction from multiple coils is a chal-
lenging problem.

The most commonly used method is the sum-of-square
(SOS) reconstruction, or strictly speaking the root-mean-
square (RMS) approach. This was introduced by Roemer
et al. as a simple way of near-optimal combination without
needing to know the coil sensitivities [3]. It has been no-
ticed, however, the SOS introduces bias to the estimated im-
ages in the presence of noise, please see [4] and references
therein. The bias is due to the rectification of noise during
the RMS calculation and mainly affects the noise regions.
Some research efforts have been directed to estimating the
coil sensitivity signal and noise correlation matrices adap-
tively. Due to inherent difficulties in modeling the coil sen-
sitivities, the estimation leads to bias or even lower compos-
ite image signal-to-noise ratio (SNR) than the SOS [5] [6]
[7]. Recently, the performance in terms of SNR of some re-
combination techniques, such as the SOS, singular value de-
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composition and coil average have been analyzed [7]. The
authors noticed that the average reconstruction method usu-
ally has a lower SNR than the other techniques. The SNR
they considered, however, is to be shown still suboptimal.
In this article, we perform principal components analysis
(PCA) and construct an image reconstruction technique that
achieves the best SNR. The motivation for this analysis is
to model the phased-array MR imaging reconstruction in a
way similar to the block-fading (piecewise constant) chan-
nels, which emulates slowly varying fading channels in multiple-
antenna systems. Our paper takes a different approach from
SENSE or TSENSE [8] [4], in that SENSE or TSENSE deals
with coil sensitivity estimates and uses either polynomial
fitting or filtering to achieve a high degree of alias artifact
rejection in the presence of noise. In contrast, we do not
handle coil sensitivity estimates. By exploiting the proper-
ties of coherence regions and constructing new matrices, we
obtain image pixel values directly from eigen analysis, with
the aim to achieve the highest SNR possible in the presence
of noise, and to remove the pixelwise scaling errors. Our
analyses shed light on the performance of the phased-array
MRI reconstruction, and give new insight into good image
formation schemes.

In this correspondence article, vectors are denoted by
underlined small letters. We use capital letters to denote ma-
trices (some constants are also capital letters, which should
be clear from the context). The superscripts of �, T , and H
denote the complex conjugation, transpose, and Hermitian
transpose, respectively. The notation |·| and Re(·) represent
the magnitudes and real parts of complex numbers, respec-
tively, and ‖ · ‖ represents the l2 norms of vectors. IL×L

denotes the L × L identity matrix. Tr(·) denotes the trace
of a matrix. The article will be organized as follows: Sec-
tion 2 constructs the optimum SNR from Bayesian analysis.
Section 3 provides the PCA analysis and construction. This
article will be concluded in Section 4.

2. BAYESIAN ANALYSIS FOR OPTIMUM SNR

We will consider the MRI signal model defined in [10]. On
a slice parallel to the (x, y) plane, define

kx(t) =
∫ t

0

Gx(τ)dτ, ky(t) =
∫ t

0

Gy(τ)dτ, (1)
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where Gx(τ) and Gy(τ) are the strengths of the external
magnetic gradient field along x and y axes. For a given
antenna, the received signal without noise is

s̃(t) = e−ıω0t

∫ ∫
ρ(x, y)c�(x, y)e−ıλ(kx(t)x+ky(t)y)dxdy,

(2)
where ρ(x, y) is the complex-valued MR contrast propor-
tional to the transverse magnetization, which is regarded as
the pixel value of the MR image, c(x, y) is the coil sensi-
tivity value. In the spatial domain, we denote the complex-
valued received signal as

s(x, y) = ρ(x, y)c�(x, y). (3)

For multiple arrays consisting of M coils, we consider an
N -pixel image ρ = {ρk}N

k=1, where each element of ρ is
an MR pixel. Let CN = [ck,l] be the coil sensitivity matrix,
where ck,l is the coil sensitivity for the kth pixel at the lth
coil, 1 ≤ k ≤ N , and 1 ≤ l ≤ M . Let SN = [sk,l] be the
measurement matrix, which is described as [10]

sk,l = ρkc�
k,l + σnk,l, (4)

where NN = [nk,l] is a complex-valued noise matrix, and
σ is a scaling factor with σ2 representing the noise power.
The noise matrix satisfies E(n�

k1,l1nk2,l2) = ql1,l2δk1,k2,
where δ is the Kronecker delta function. That is, at a given
pixel, the noise is correlated across coils; at different pix-
els, uncorrelated. The noise is modeled as Gaussian with
zero mean and covariance matrix Q = [qk,l]. Following the
assumptions in [7], we also assume that the real and imag-
inary parts of the measurement noise are uncorrelated and
with the same variance.

With the above model, when the coil sensitivities are
known, the likelihood of the observations is

p(sk|Q, ck) = (2π)−
N
2 |Q|− 1

2 e−
1
2 (sk−ρkc�

k)HQ−1(sk−ρkc�
k),
(5)

where sT
k and cT

k are the kth row vectors of SN and CN ,
respectively. By taking the derivative of the log-likelihood
and equating it to zero, we can obtain the maximum-likelihood
estimation of the pixel value

ρ̂k =
cT
k Q−1sk

cT
k Q−1c�

k

. (6)

The derivation of this simple combination formula is straight-
forward. Even though optimal, it is not practical at all, be-
cause the coil sensitivities are usually unknown in practice.
In this paper, we only use it as a theoretical reference in
comparing SNR values of various schemes.

It can be easily shown that with known coil sensitivities,
ρ̂k is unbiased, that is, E(ρ̂k) = ρk. The variance of the
estimator is V ar(ρ̂k) = σ2/ (cT

k Q−1c�
k). Thus, the SNR of

this estimator is

SNRo =
|ρk|2
σ2

cT
k Q−1c�

k. (7)

Notice that for comparison purposes, we shall follow the
definition of SNR used in [7], which is the squared signal
level divided by the variance of noise. That is, this definition
is the square of the ordinarily used SNR.

In contrast, in the same situation, the best SNR obtained
in [7] is

SNR′ =
|ρk|2‖ck‖4

σ2cH
k Qck

. (8)

If Q is a uniform matrix, Q = q · IM×M , q is a positive
constant, it can be seen that SNRo = SNR′. In the general
case, however, it can be shown using the Cauchy-Schwartz
inequality that cT

k Q−1c�
k ≥ ‖ck‖4/(cH

k Qck), i.e., SNRo ≥
SNR′. To see this, decompose Q into Q = UT ΛU , where
UT U = IM×M , and Λ = Diag(λ1, · · · , λM ) with λ1 ≥
λ2 ≥ · · · ≥ λM > 0. Now we have

(cT
k Q−1c�

k)(cH
k Qck) = (dT

k Λ−1d�
k)(dH

k Λdk)

=
M∑
l=1

|dl|2
λl

M∑
l=1

|dl|2λl

≥ (
M∑
l=1

|dl|2)2 = ‖ck‖4,

(9)

where dk = Uck. The equality can be achieved only if
λ1 = · · · = λM = q.

Making use of Kantorovich inequality [11], the follow-
ing upper bound can be yielded:

SNRo

SNR′ =
(cT

k Q−1c�
k)(cH

k Qck)
‖ck‖4

≤ (λ1 + λM )2

4λ1λM
. (10)

The above upper bound actually is a good approximation to
the true value of SNRo/SNR′. If the largest eigenvalue is
thrice as large as the smallest eigenvalue, for example, the
ratio of the SNRs, SNRo/SNR′, is approximately 4

3 .
According to the analysis of [7], the proposed methods,

including the SOS, singular vector decomposition, and coil-
average reconstruction achieve a performance with at most
SNR′. These methods, therefore, are generally suboptimal
compared to the optimum SNRo. The coil sensitivities,
however, are usually unknown a priori and hard to model
in practice. Thus, the above maximum-likelihood estimator
cannot be directly applied. Thanks to the property of the
magnetic fields, the sensitivities are regarded as the fading
coefficients of a slowly-varying channel. To adapt to in-
dividual coil field maps, we shall make use of the principal
components analysis and piecewise-constant fading channel
properties to combine the MRI images.
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3. PCA OF PHASED-ARRAY MRI
RECONSTRUCTION

As mentioned above, the coil sensitivities are hard to model
in practice. The noise variance, on the contrary, can be es-
timated easily [6]. Thus, we shall assume that Q is known
to us through adaptive estimation but the coil sensitivities C
are unknown. In this case, we perform the PCA to estimate
the MRI combined pixel values.

Before introducing the PCA method, let us consider the

modified SOS method which uses
√

sH
k Q−1sk as the es-

timate of the MRI contrast value. It may be regarded as
a weighted version of the SOS using Q matrix, which can
be estimated in an adaptive fashion [6]. This estimate is
a function of σ, denoted as ρ̂k(σ). In the noise-free case,

ρ̂k(0) = |ρk|
√

cT
k Q−1c�

k. In the noisy case, by using the
first-order Taylor expansion, we can find the SNR to be:

SNR =
(ρ̂k(0))2

σ2E(| d
dσ ρ̂k(0)|2) =

|ρk|2
σ2

cT
k Q−1c�

k. (11)

It can be seen that in small-noise scenarios, the SNR of the
modified SOS achieves the optimality. The estimate, how-

ever, still comes with the scaling factor
√

cT
k Q−1c�

k. If the
scaling factor is not constant, the estimate will have scaling
errors across pixels. Even if ck is a constant vector across
different pixels, in general, the error still plagues the recon-
struction due to the existence of inverse noise variance.

To alleviate from the scaling errors caused by
√

cT
k Q−1c�

k,
let us consider the matrix constructed from the kth observa-
tion, k = 1, · · · , N ,

R := s�
ksT

k = |ρk|2ckcH
k + 2σRe(ρ�

kcknH
k ) + σ2n�

knT
k .
(12)

The noise level can be estimated through a standard pre-
scan calibration. For weak noise, R ≈ |ρk|2ckcH

k , and the
eigenvector of R is ck (up to a scaling factor), correspond-
ing to the largest principal component |ρk|2‖ck‖2. We can
examine the principal eigenvector of R to determine if the
coil sensitivity vector is approximately constant for differ-
ent pixels. Because of the piecewise constant channel prop-
erty, this condition usually holds for a coherence region.

Now let us consider a coherence region where ck is ap-
proximately a constant vector to make use of the PCA. As-
sume for pixels ρ = [ρ1, · · · , ρL]T , this condition holds.
Then we consider the model in Eq. (4) for L pixels in this
small region to exploit the spatial diversity that the antenna
array provides:

SL = ρcH + σNL, (13)

where c is the coil sensitivity which is the same across L
pixels, and NL is an L × M noise matrix. After obtain-
ing SL, the whole picture SN can be obtained by patching

different SLs. We construct the following matrix

P = SLQ−1SH
L

= (ρcH)Q−1(cρH) + 2σRe(ρcHQ−1NH
L ) + σ2NLQ−1NH

L .

(14)

In the weak-noise case, P is approximately equal to the first
term, (ρcH)Q−1(cρH), whose principal eigenvector is ρ (up
to a scaling factor), corresponding to the principal eigen-
value of ‖ρ‖2(cHQ−1c). This weak-noise case can be re-
lated to the SVD method [7], where singular values are ex-
ploited to achieve an SNR that is the same as SOS. In [9],
the authors have shown SOS can asymptotically achieve op-
timal SNR if Q = I . In general, SOS will lead to biased
images as demonstrated in Section 2.

Analogously to multiple-antenna communications sys-
tems, if we make use of a training scheme so that a training
sequence is employed to estimate c in this coherence region,
then we can recover the power of ‖ρ‖2, thus, reconstruct ρ
without any scaling ambiguity. This training sequence can
be designed optimally in a way similar to [12].

In the noisy case, taking the expectation of SLQ−1SH
L

leads to

E(P ) = (ρcH)Q−1(cρH) + Mσ2IL×L. (15)

In the above, we have used

E(NLQ−1NH
L ) = MIL×L. (16)

To see this, we provide its derivation in the following. De-
note NL by [n1, · · · , nL]T , where nk is an M × 1 column
vector, k = 1, · · · , L. Let us consider E(nT

i Q−1n�
j ). In

the case i �= j, according to our assumption on the noise,
E(nT

i Q−1n�
j ) = 0. In the case i = j, we have

E(nT
i Q−1n�

i ) = E(Tr(Q−1n�
i n

T
i ))

= Tr(E(Q−1n�
i n

T
i ))

= Tr(IM×M ) = M.

In the above, we have used the matrix identity. Thus,
E(NLQ−1NH

L ) = E([nT
i Q−1n�

j ]L×L) = MIL×L.
Now, we can observe the principal components of E(P )

consisting of one large eigenvalue, λ0,P := ‖ρ‖2(cHQ−1c)+
Mσ2, and L − 1 smaller eigenvalues λ1,P := Mσ2. The
eigenvectors of E(P ) are exactly the same as those of
(ρcH)Q−1(cρH). The dominant eigenvector correspond-
ing to λ0,P is ρ (up to a scaling factor), whose elements
are exactly the pixel values of the MRI in this region. It
can be seen ρ may serve as a maximum eigenfilter that is
the stochastic counterpart of a matched filter and maximizes
the output SNR for a random signal. Denote the normalized
eigenvector ρ as ρ

0
, that is, ‖ρ

0
‖ = 1. In order to get the

true value of ρ, we need additional information regarding
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the power of ρ. Again, training sequences may be employed
for this purpose. The noise power σ2 can be obtained by
simply dividing the smaller eigenvalue by the number of
coils. Without any additional information, we use the fol-
lowing estimation:

ρ0

√
λ0,P − λ1,P . (17)

In the case of multiple scans, with the assumption of
ergodicity, the expectation in (15) can be evaluated using the
consecutive scans of the object. Since typically averaging of
SOS reconstructed images over a large number of scans is
done is practice, evaluating the expectation is as practical as
the SOS procedure.

The estimation and perturbation of λ0,P lead to the SNR

of
‖ρ‖2

Lσ2 cHQ−1c. Since ‖ρ‖2 =
∑L

k=1 |ρk|2, the SNR be-
comes the average of the pixelwise optimum SNRs in the re-
gion considered. Most importantly, the pixels reconstructed
in the coherence region are free from the nonuniform scal-
ing errors.

4. CONCLUSION

This article considers the principal components analysis of
phased-array MR image recombination. The pixelwise op-
timum SNR is obtained. In both weak-noise and noisy sce-
narios, the method obtains the optimum SNR, at the same
time, alleviates from the nonuniform scaling errors. Our
future research line includes conducting experiments using
real objects and simulations to demonstrate the power of
the optimum reconstruction technique. This analysis sheds
light on the performance of phased-array MRI reconstruc-
tion, and gives new insight into good MR image formation
schemes.
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