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ABSTRACT

Shape-based solutions have recently received attention for certain

ill-posed inverse problems when the relevant constituent parame-

ters can be modeled as isotropic and piecewise continuous or ho-

mogeneous. Their advantages include implicit imposition of rele-

vant constraints and reduction in the number of unknowns, espe-

cially important for non-linear ill-posed problems. We introduce a

method, based on modified B-splines and the Boundary Element

Method (BEM), for shape-based inverse problems and apply it to

current-injection Electrical Impedance Tomography (EIT) in the

torso. We assume the general shape of piecewise constant inho-

mogeneities is known but their conductivities and their exact loca-

tion and shape is not. We model the boundaries of the unknown

inhomogeneities using bivariate spline basis shape functions and

solve for the conductivities, locations, and boundaries. The per-

formance of our method is illustrated via simulation in a realistic

torso model.

1. INTRODUCTION

Electrical Impedance Tomography (EIT) is an imaging modality

in which the relationship between currents and voltages on the

surface of a volume is used to estimate the conductivity (or more

generally, the impedance) map in the interior. In particular, we ad-

dress here the problem of determining the conductivity inside the

torso by injecting currents with an array of electrodes and measur-

ing voltages with the same electrodes. This is of interest in many

application areas, including monitoring of the mechanics of heart

and lung function and electrocardiography [1].

EIT is a very badly posed inverse problem, and in a 3D vol-

ume requires far too many parameters to be estimated in a stable

fashion if one wants to obtain good spatial resolution and good ac-

curacy in conductivity estimates. In addition, the dependence of

the conductivity on the measured quantities is non-linear. One ap-

proach to such problems that has been treated recently in a number

of reports is to parameterize the geometry in a fashion that reduces

the number of unknowns. In particular, in problems such as EIT

of the torso volume, it is reasonable to model the volume as being

composed of a relatively small number of piecewise-constant (or

more generally, piecewise homogeneous) regions. In that case the
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unknowns are reduced to the location of the boundaries of these

regions and one (or a few) parameter value(s) per region. Such

approaches are often called “shape-based inverse solutions”, since

the unknown boundaries are typically modeled with some para-

metric shape functions. Among the approaches that have been ap-

plied are level sets , trigonometric series, and variations of closed-

form analytic objects such as ellipsoids [2]. Spline-based methods

have been applied in two-dimensions, including to EIT [3], but

their extension to three-dimensions is notoriously difficult. (Due

to space limitations we cannot cite a number of relevant reports of

such methods, so we have selected only a few here.)

In such inverse problems, one also needs a model of the re-

lationship between the unknown quantities and the measurements,

known as a forward model. In EIT, this model is typically obtained

by assuming the geometry and conductivities are known (so, in a

shape-based model, assuming the region boundaries are known)

and solving Laplace’s equation in the interior of the torso (assum-

ing the frequencies being used are small enough so that the quasi-

static approximation holds, as is generally true in EIT imaging sce-

narios) with appropriate boundary conditions. One approach for

solving Laplace’s equation with the piecewise constant assump-

tion that is particularly attractive for modeling and computational

reasons is the Boundary Element Method (BEM). BEM requires

that the surface of each region be represented by some sort of dis-

crete mesh (typically via a triangulation); then the volume integrals

derived from Laplace’s equation are converted to surface integrals

over these meshes. The difficulty in using BEM in the shape-based

EIT problem described here is that the non-linearity of the EIT

problem requires iterative solutions, but the mesh would need to

be changed with every iteration. If one parameterizes the surface

appropriately, however, one might be able to simplify this mesh

re-generation problem sufficiently to make this approach compu-

tationally practical.

In this work, we report on the development of a method, based

on a modified B-spline approach, that allows us to define a set of

knots for the B-spline based on approximation assumptions about

the objects which constitute the conductivity inhomogeneity in the

interior. For instance, we would assume that we know that there

is an inhomogeneity with the general shape of a heart inside the

torso. Using this assumption, as we describe below, we set up a 3-

stage optimization algorithm that allows us to iteratively estimate

the location of this object, to find its external boundary, and to

estimate its internal conductivity. We show a simulation example

based on a realistic torso geometry and taking into consideration a

single internal object, the heart.

In Sec. 2, we briefly describe our new 3D BEM-EIT forward
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model. We then present our method to model the internal surfaces

using a bivariate spline shape function basis and propose an algo-

rithm to solve the associated inverse problem. In Sec. 3, simula-

tion results of applying this method on a 3D human torso model

are shown. We discuss some details of the method presented and

ideas for the future work in Sec. 4.

2. THE FORWARD AND INVERSE SOLUTIONS

In the forward problem, we assume the geometry and conductiv-

ities are known and we are looking for the relation between the

current injected by electrodes placed on the outermost surface and

the potential distribution on the same surface. By using the BEM-

based method we introduced in [4], this relation can be represented

as:

Φ1 = TΓ1 (1)

where T is a dense matrix that directly relates Φ1, the potential

distribution on the outermost surface, to the current distribution on

the same surface, Γ1. T is a function of both the geometry and

conductivities of all the objects.

The inverse problem, then, is to find a combination of parame-

ters for which the difference between the measured potentials and

the potentials predicted by the model are minimum, subject per-

haps to some a priori constraints on those parameters. Here, these

parameters represent both the conductivities and geometry of the

internal objects.

We assume the shape of torso surface is known, but to recon-

struct the shape of internal surfaces, first we need to represent them

with as few parameters as possible. One approach is to mathemat-

ically describe the surfaces of the 3D inhomogeneities using some

shape function basis.

2.1. Modeling the heart surface

Here, we briefly explain the method we developed to parameterize

the heart surface using a bivariate spline shape function basis. The

same method can be used for any convex surface.

In the first step we choose a few control points on the heart

surface and unfold the heart surface by representing the surface in

spherical coordinates, while assuming that the heart center is lo-

cated at the origin. In the new coordinate system, we treat these

control points as being distributed on a surface represented by

r = surf(θ, φ). Choosing the control points carefully, we make

a gridded map of r on −π/2 ≤ φ ≤ π/2 and −π ≤ θ < π.

Note that given a set of (θ, φ) points, the shape of the heart is rep-

resented by the associated values of r. In the second step, we find

a least square approximation to r by tensor product splines using

the method introduced in [5]. In the third step, we unfold the fitted

surface by going back to the Cartesian coordinates. Since after the

second step, we have an analytical B-spline description of the heart

surface, we can generate a triangular mesh for it with any density

we like, which we then can use in our BEM model. In practice,

we generate a triangular mesh of the unit sphere and then map its

points to the B-spline heart surface to generate the heart mesh. Fig.

1 illustrates the proposed process.

2.2. Inverse solution algorithm

For convenience, we explain the method for the case when there is

only one internal object, a heart with a constant (nonzero) conduc-

Fig. 1. The process of modeling the heart surface using bivariate

splines and generating a triangular mesh for it.

tivity, inside the torso. The extension to more internal piecewise

constant objects is straightforward.

In modeling the heart surface, since we choose the φ’s and θ’s

of the control points, the only parameters of the heart surface we

need to find in the inverse solution to reconstruct the heart shape,

are the distances of the control points from the heart center, the

r’s. We also need to find the heart center to retrieve the relative

position of the heart and torso. So we have been able to dramati-

cally decrease the unknown parameters compared to representing

the surface with a triangular mesh directly. In addition to the ge-

ometry, the piece-wise constant conductivities of different regions

are also unknown and should be found in the inverse solution. So

we propose a method to sequentially estimate these three different

groups of unknowns.

We can think of the inverse problem as a nonlinear optimiza-

tion problem to estimate a limited number of parameters. Thus our

ability to find the conductivity values accurately depends upon the

definition of the error function and the signal-to-noise ratio (SNR).

Since there is always some noise in the data, which can be a

combination of measurement noise, modeling error, and numerical

error, to prevent the inverse solution from giving us a shape which

does not look like a real heart, we can constrain the heart shape to

regularize the solution and then use the iterative algorithm shown

in Fig. 2 to minimize the following quadratic error cost function

CF =

NX

i=1

(Ei − Vi)
2 + regularization term (2)

where Ei is the potential at electrode i predicted by the forward

model with a given candidate inverse solution, Vi is the experi-
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Fig. 2. The iterative algorithm for the inverse solution.

mentally measured potential at electrode i, and N is the number of

electrodes.

The regularization term can be a constraint put either on the

heart shape itself or on the control points. For example we can

constrain the total area of the heart surface or its total volume or,

since we know the reconstructed heart surface should be smooth,

we can constrain the surface gradient or curvature. As an example

of a constraint on the control points, we can use reference control

points by averaging over such points based on real heart shapes us-

ing the method explained in section 2.1 and then use the regulariza-

tion term to force the reconstructed heart surface to be somewhat
similar to the reference heart model by setting the regularization

term in (2) to be

regularization term = λ

MX

i=1

(CPi − CPref,i)
2. (3)

Here CPref are the reference control points, CP are the desired

control points, M is the number of control points and λ is a regu-

larization parameter.

Each of the steps (a), (b) and (c) in the algorithm shown in

Fig. 2 is itself a nonlinear optimization problem. To update the

conductivities and the heart center in steps (a) and (b), we used

the large-scale algorithm which is a subspace trust region method

based on the interior-reflective Newton method [6]. To update the

control points in step (c), we used the downhill simplex algorithm

[7]. Each iteration in the algorithm in steps (a) and (b) involves the

approximate solution of a large linear system using the method of

preconditioned conjugate gradients (PCG). It is shown in [8] that

for large problems, methods based on the CG iterations are more

efficient than other methods like LU or Cholesky decomposition.

Unlike the simplex method, which does not need any evaluation

of the cost function’s gradient (and hence, is quite easily imple-

mentable), the preconditioner computation used in the PCG part

of the large-scale method needs the Jacobian matrix; therefore, we

developed an algorithm to analytically compute the Jacobian ma-

trix for the BEM solution, as required by this method. This signifi-

cantly improves the speed of the solution comparing with using the

Finite Difference Method (FDM) to compute the Jacobian matrix

at each iteration or using the simplex algorithm to do the optimiza-

tion. Using this algorithm, we can also put constraints on values

of the heart center and conductivities by setting lower and upper

bounds found from the literature.

Fig. 3. The model of a male human torso with heart as the only

internal inhomogeneity, and the surface electrodes.

Fig. 4. Reconstructed geometry by the inverse solution.

3. RESULTS

We implemented our BEM approach using SCIRun [9] (a scientific

programming environment) with a dynamic socket-based interface

to MATLAB for some of the computations, and applied it to the

model shown in Fig. 3 which is made of the heart and tank ge-

ometry in the SCIRun dataset. 192 electrodes distributed all over

the torso surface are used in this model. In principle, it is possible

to inject 191 independent current patterns and read the resulting

voltages to be used for solving the inverse problem but in our sim-

ulation, to save time, as suggested in [1], we only used a linearly

independent set of 100 current patterns which were chosen to have

maximal information content (in the sense of being the best for

distinguishing the medium from a homogeneous case). Specifi-

cally, we approximate the eigenfunctions with the first 100 largest

eigenvalues of the difference between T for the model in Fig. 3

and that for a homogeneous model. In practice if we used fewer

electrodes or had more unknowns, we could use the full number of

independent current patterns to obtain all possible information to

help the inverse solution.

To demonstrate the retrieval process as it would be applied to

real data, we first generated mock noise-free torso data by apply-

ing the chosen current patterns to the electrodes and computing the

resulting potentials on the same electrodes assuming σ1 = 1 and

σ2 = 10 (arbitrary units) where σ1 and σ2 denote the conductivi-

ties of the torso and heart, respectively. We added spatially uncor-

related Gaussian noise, with a level like that expected in modern

EIT system, i.e., SNR=40dB. We used 50 control points to model

the heart using cubic B-splines. The starting point for the itera-

tive inverse solution was a homogeneous model, with a sphere in

the center of torso as the initialization shape for the heart. Fig. 4

shows the reconstructed geometry and table 1 shows the percent
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Table 1. Percent Error in Retrieved Conductivities
SNR=40dB , 5 Realizations

∆σ1(%) ∆σ2(%)
1.42 ± 3.72 1.51 ± 2.87

error in retrieved conductivities for the error cost function (2). We

used (3) as the regularization term in (2) and ran the simulation 5

times with different noise realizations.

4. DISCUSSION

In our formulation of the inverse problem of EIT when we assume

a piece-wise constant conductivity profile and parameterize the

surfaces of the internal inhomogeneities, the inverse problem be-

comes much better posed comparing to use the classical approach

of voxelating the region of interest and treating the values of the

conductivity in each voxel as an unknown. Using BEM, only the

surfaces of objects need to be discretized, in contrast to discretiz-

ing the whole volume in, for example, Finite Element Method

(FEM), often used in classical approaches. It is one of the major

pluses of BEM, especially because construction of volume meshes

for complicated objects, particularly in 3D , is a time consuming

exercise. Another advantage of BEM is that only the boundary

conditions are being approximated whereas in FEM the whole dif-

ferential equation is being approximated [10]. A disadvantage of

BEM is that it cannot easily model anisotropic conductivity re-

gions, which might be a factor in the heart and skeletal muscle

regions. Another disadvantage is that its integrals are far harder to

evaluate than the element integrals in FEM. Also the integrals that

are the most difficult (those containing singular integrands) have

a significant effect on the accuracy of the solution. The need to

evaluate integrals involving singular integrands makes the BEM

at least an order of magnitude more difficult to implement than

a corresponding FEM procedure. This, plus the fact that our in-

verse solution is a nested iterative algorithm, makes the recon-

struction computationally expensive and time consuming. Using

denser meshes for the surfaces increases the accuracy of the re-

construction with the price of increasing the solution time. In our

simulation, we used 132 nodes and 260 triangles for the heart and

771 nodes and 1538 triangles for the torso surface, or in total 903

nodes and 1798 triangles to model the whole geometry. We de-

signed our BEM code in a way that when we solve the forward

problem for the first time, we keep those parts which are the same

for all iterations in the inverse solution, so that we would not need

to recompute them at each iteration. We ran the algorithm on a PC

with an Intel(R) Pentium(R) 4 2.60GHz CPU, 1GB RAM and Red

Hat Linux 3.2.2-5 as the operating system. The inverse solution

took almost 10 hours to complete. The running time, of course,

depends on the code; in this work even though we tried to do ef-

ficient programming, we did not specifically focus on optimizing

the speed. In this algorithm the most computationally expensive

part is calculating the elements of a number of the matrices [4],

including the coefficient matrices and some of their derivatives.

However the required matrices can all be computed independently

of each other, and thus should be amenable to speed-up through

parallelization.

Modeling the heart surface using basis shape functions with

a small number of control points makes the reconstructed heart

surface smoother than a real heart. We can get a better approx-

imation of the heart surface by using more control points at the

cost of increasing the number of unknowns, which would make

the convergence slower and decrease the reconstruction accuracy.

Like all other problems which use regularization techniques, find-

ing the right regularization and constraint condition is not an easy

task. Improving the regularization method is a subject of on-going

work.

Unlike some work in EIT that current is injected using a pair

of electrodes and voltage is measured using other electrodes, we

use the adaptive method proposed in [11] where current is injected

through all electrodes simultaneously and the voltages are mea-

sured using the same electrodes with respect to a single grounded

electrode. Work is currently underway to impose the more ac-

curate electrode boundary conditions described in [12] in our 3D

BEM model.
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