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ABSTRACT

Magnetic Resonance Imaging (MRI) requires 

reconstruction of an image from non-uniformly sampled 

Fourier domain data. The point spread function (PSF) is 

strongly affected by the Fourier weights, also called 

density compensation function (DCF). We formulate the 

DCF selection as an optimization problem with linear 

matrix inequality (LMI) constraints. The maximum 

sidelobe level of the PSF is minimized while the 

mainlobe width is held constant. Our approach is in 

contrast to existing suboptimal approaches where a DCF 

is first found based on local sampling density, and then a 

secondary windowing function is applied to reduce 

sidelobes. Reconstructions of simulated data demonstrate 

that our approach produce more accurate and visually 

better looking images. 

1. INTRODUCTION 

MRI is a powerful and widely adopted imaging modality 

in biomedical applications. In MRI, the raw data can be 

modeled as irregularly spaced samples in the Fourier 

domain (k-space) of the image. The reconstruction 

problem is then to estimate the image from the k-space 

samples. The most common method for MRI image 

reconstruction is gridding [1]-[2]. In this method, the 

nonuniformly sampled data points are first resampled onto 

a Cartesian grid by convolving with an interpolation 

kernel; then FFT is performed on the regridded data to 

obtain the reconstruction image. Another well-known 

method is conjugate phase (CP), where the irregular k-

space samples are directly used and multiplied with a 

spatially dependent conjugate exponential factor, and the 

results summed for every spatial point.  In both gridding 

and CP, a DCF must be applied to compensate for the 

non-uniform k-space sampling density. 

Many researchers have worked on the MRI 

reconstruction and attempted to get high quality 

reconstruction images. Most of the works are based on 

gridding algorithm. Jackson et. al. have studied various 

interpolating kernels for gridding algorithm and find the 

best one in terms of the relative amount of aliasing energy 

[2]. Meyer et. al. derived DCF for gridding in spiral 

imaging [3]. Hoge et. al. proposed DCF based on the 

Jacobian determinant for the transformation between 

Cartesian coordinates and the nonuniform coordinates [4]. 

Hossein Sedarat et. al. established the relationship 

between the gridding algorithm and the least squares 

method and found the optimal gridding parameters by 

minimizing the average error of matrices approximation 

[5]. At the same time, algorithms other than gridding such 

as Pseudoinverse Calculation [6], Gegenbauer 

Reconstruction [7] and URS/BURS [8] have been studied. 

But none of these methods considered optimizing the PSF 

directly, though PSF is the most important characteristic 

of an imaging system. 

We note that the mathematically ideal DCF may not 

produce the most desirable PSF because it may suffer 

from high sidelobes. In this paper we propose to 

reformulate the DCF selection as an optimization problem 

with LMI constraints. Our goal is to design a DCF that 

explicitly address the mainlobe/sidelobe trade off, i.e. 

minimize sidelobe level for a given mainlobe width. The 

prior knowledge for the region of interest (ROI) is also 

taken into consideration. If more prior knowledge is 

available and specific PSF shape is desirable, the 

proposed method can approximate the desired PSF in the 

minimax sense. Thus our method is a novel approach that 

provides flexible trade-off between contrast and resolution 

in the reconstructed image.  

In section 2, we review the gridding and CP methods 

in MRI reconstruction, demonstrated the relationship 

between DCF and the PSF, and formulated the DCF 

design problem in the LMI framework.  In section 3, we 

compare reconstruction results using the optimized DCF 

with those using prevailing DCFs. The advantages of our 

method will be demonstrated. In the final section, we 

summarize advantages of this work. 

2. PROBLEM FORMULATION 

2.1 MRI Image Reconstruction Methods 

In MRI, the raw data can be modeled as nonuniform 

samples in the spatial frequency domain, or better known 

in the MRI community as k-space [9]. Figure 1 shows two 

trajectories widely used in non-Cartesian sampling: radial 

sampling and spiral sampling. The acquired data can be 

expressed as sampled 2D Fourier transform of the image: 

, , , ,( , ) ( , )exp 2 ( )n x n y n x n y n

FOV

F F k k f x y j xk yk dxdy (1)

where x and y denote the position in image domain, 
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, ,, , 1,2,x n y nk k n  are sampling points in the k space, 

FOV is the field of view. The objective of reconstruction 

is to find a good estimate of the image ( , )I x y  given the k-

space data nF .
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Fig.1: Radial (left) and spiral (right) k-space sampling trajectory 

In the gridding method, nonuniformly measured data 

are first interpolated onto a uniform (rectangular) grid, 

then inverse Fast Fourier transform (FFT) is applied to the 

interpolated data. This procedure can be expressed as 

, , , ,( , ) ( , ) ( , )x y n x n y n x x n y y n

n

F k k F D k k H k k k k  (2) 

where ( , )x yH k k  is the interpolation kernel, ( , )x yD k k  is the 

DCF inversely proportional to the local sampling density 

[5]. A widely used kernel is the Kaiser-Bessel window 

with 13.9068 , proposed by Jackson [2]. Taking 

inverse Fourier transform of (2), we obtain: 

, , , ,( , ) ( , ) ( , )exp 2 ( )n x n y n x n y n

n

f x y h x y F D k k j xk yk  (3) 

where ( , )h x y  is the inverse Fourier transform of 

( , )x yH k k . For a good interpolation kernel, it is generally 

true that ( , )h x y  is strictly positive within the FOV. 

Finally, the reconstruction image is obtained by  

ˆ ( , ) ( , ) / ( , )f x y f x y h x y   (4) 

In the conjugate phase method, the k-space data 

points are weighted by the DCF and multiplied by a 

spatial dependent conjugate phase factor, then the results 

are coherently summed: 
^

, , , ,( , ) ( , )exp( 2 ( ))n x n y n x n y n

n

f x y F D k k j xk yk  (5) 

Compared to the gridding method, the CP method is more 

accurate but slower, because FFT cannot be used. In both 

methods, it is easy to show that the reconstructed image 

can be expressed as the ground truth image convolved 

with a PSF,
ˆ( , ) ( , ) * ( , )f x y f x y g x y    (6) 

where the PSF is related to the DCF by 

, , , ,( , ) ( , )exp( 2 ( ))x n y n x n y n

n

g x y D k k j xk yk  (7) 

The desired properties of the PSF are narrow 

mainlobe width and low sidelobe level. The 

mathematically ideal DCF given by Meyer [3] or Hoge [4] 

do not necessarily give good PSF because truncation and 

discretization in the k-space result in high sidelobes and 

grating lobes. An empirical window function can be 

applied to the k-space samples on top of the ideal DCF. 

However, such approach is neither rigorous nor optimal. 

Our approach is to formulate the DCF selection as a 

convex optimization problem with LMI. The DCF so 

designed can guarantee certain mainlobe width while 

minimizing the sidelobe level. For convenience, we write 

, ,( , )n x n y nw D k k  and , ,( , ) exp( 2 ( ))n x n y nV x y j xk yk . Then 

we want to design the weights nw  for the non-uniform k-

space points , ,( , )x n y nk k  so that the PSF expressed in (7) 

has the desired properties. The problem presented here is 

similar to the beam pattern design problem for non-

uniform arrays [10], although the details and objective 

differ. Below we give a brief derivation of the LMI design 

formulation.  

2.2 Designing DCF with LMI 

A Linear Matrix Inequality is any constraint of the form 

0 1 1( ) : ... 0N NA A x A x Ax   (8) 

where

• 1( ,..., )Nx xx  is a vector of unknown scalars (the decision 

or optimization variables) 

• 0 ,..., NA A  are given symmetric matrices 

•> 0 stands for “positive definite,” i.e., the smallest 

eigenvalue of ( )A x  is positive [11], [12]. LMI constraints 

are convex, thus many optimization problems can be 

solved numerically by efficient convex optimization 

algorithms [10-12]. 

 Suppose we wish to minimize the maximum 

sidelobe level in the FOV given a mainlobe width . This 

corresponds to maximizing image contrast for a given 

resolution. We may express this objective mathematically 

as

2

2 2

min ,

(0,0) 1

subject to

( , ) for

n

n

n n

n

g w

w V x y x y L

w

 (9) 

where L is the radius of the FOV. The second constraint in 

Eq. (9) can further be expressed as a LMI 
H

H

( , )
0

( , ) 1

x y

x y

w V

V w
 (10) 

where
T

1 2, ,w ww  is the DCF vector to be optimized 

and
T

1 2( , ) ( , ), ( , ),x y V x y V x yV . Direct application of 

the LMI constraint (10) is computationally expensive for a 

2D problem. For example, consider reconstruction of a 

100x100 image from 3000 k-space samples. This would 

incur 3000 design variables with 10000 constraints. We 

may mitigate the computational burden by using 

approximate circular symmetries of the k-space samples 

and the PSF. First, the PSF is approximately circularly 
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symmetric, therefore only constraints along a radial slice 

need to be included. Second, the k-space samples are 

approximately circularly symmetric, therefore we may 

assign only one weight for each radius. For example, in 

spiral sampling, the sampling points of the trajectory can 

be expressed as 

, max

, max

( / )cos(2 / )

( / )sin(2 / )

x n k t

y n k t

k nk N n N

k nk N n N
 (11) 

We may assign nw  to be the same for ( 1) t tm N n mN .

We name these weights mw  and then define 
1

, ,

( 1)

( , ) exp( 2 ( ))
t

t

mN

m x n y n

n m N

V x y j xk yk  (12) 

These new design variables and basis functions can then 

be substituted into (10) and solved effectively with 

existing techniques. 

3. SIMULATION EXAMPLES 

In this section we present reconstruction examples from 

synthetic data for the modified Shepp-Logan phantom 

[13]. The phantom consists of ellipses of different 

contrast, and its Fourier transform can be analytically 

calculated [6] and sampled at arbitrary points. We use the 

Matlab LMI toolbox as the optimization solver. To 

measure the reconstruction accuracy, we calculated the 

correlation coefficient  of the reconstruction image and 

the phantom image. An equivalent measure would be the 

normalized mean square error (NMSE), which is related 

to the correlation coefficient by 2NMSE 1 . We have 

considered both radial and spiral sampling, with 

6400kN  sampling points filling a bandwidth of 

max 32k  in each case. As a benchmark for comparisons, 

reconstruction images using traditional gridding method 

and the DCF proposed by Jackson et. al [2] are shown in 

figure 2, for radial and spiral samplings respectively. The 

artifacts due to PSF sidelobes are obvious here. 

(a)

-0.5 0 0.5 1

-0.5

0

0.5

1

(b)

-0.5 0 0.5 1

-0.5

0

0.5

1

(a) Radial sampling 0.814 (b) Spiral sampling 0.803

Fig. 2: Gridding reconstruction using Jackson’s DCF 

Next we design the optimal DCF using the LMI 

technique discussed in section 2. For radial sampling, we 

choose max1.2 / k  and 0.36L  in Eq. (9). The minimum 

sidelobe level achieved with this design was -58.3dB .

Using the LMI optimized DCF, we reconstruct the 

phantom with both conjugate phase and gridding methods 

respectively. The images are shown in figures 3-4, along 

with their respective correlation coefficients. For 

comparison, the same reconstructions using Hoge’s DCF 

[4], which is mathematically exact, are shown side by 

side.
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Fig. 3: CP Reconstruction for radial sampling 

We observe that with both methods the reconstruction 

image using our optimized DCF has better visual 

appearance as well as higher correlation coefficient than 

that using Hoge’s DCF, with improvements more 

dramatic in the conjugate phase method. Figure 5, which 

is a cross sectional plot of the phantom and CP 

reconstructions, shows the advantages of the optimized 

DCF more clearly. 
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Fig. 4: Regridding reconstruction for radial sampling 
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Fig. 5: Centerline profile comparison for radial sampling 

For spiral sampling, we choose max1.1/ k  and 

0.30L . The minimum sidelobe level achieved was 

55.4dB .  We perform reconstructions using the LMI 

optimized DCF with gridding and conjugate phase 

methods respectively. The results are shown in figures 6-

7. Also for comparison, reconstructions using Meyer’s 

DCF [3], which is mathematically exact, are shown side 
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by side. Similar to the case of radial sampling, the 

optimized DCF results in higher quality reconstruction 

both visually and quantitatively. 
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Fig. 6 CP Reconstruction results for spiral sampling 
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Fig. 7 Regridding results for spiral sampling 

It should be noted that a sidelobe-reducing window 

(e.g. Hamming window) could be applied on top of 

Hoge’s or Meyer’s DCF. However, such approach is 

empirical and not optimized. For example, in spiral 

sampling, applying the Hamming window on top of 

Meyer’s DCF results in wider mainlobe and lower 

sidelobes. However adjusting our optimization 

parameters, we could obtain a PSF with the same 

mainlobe width, but lower sidelobe level, in the same 

ROI. This effect is clearly demonstrated in figure 8. The 

main strength of our method is that it allows flexible yet 

optimum tradeoff between mainlobe width and sidelobe 

level, or between contrast and resolution. Moreover, it is 

applicable to sampling trajectories where no analytical 

DCF can be derived. 

4. SUMMARY AND CONCLUSIONS 

We have formulated the MRI image reconstruction 

problem as a PSF optimization problem with LMI 

constraints. Compared to the traditional approach of 

obtaining an accurate DCF and subsequently applying a 

window, our method directly optimizes individual weights 

of the k-space sampling points with the objective 

expressed as obtaining the minimum sidelobe level for a 

given mainlobe width of the PSF, or equivalently 

obtaining the minimum mainlobe width for a given 

sidelobe level. The most important advantage of the 

proposed method is its flexibility to control the tradeoff 

between spatial resolution and contrast resolution. We 

demonstrated that the reconstructed images using the 

optimized DCF are visually better and numerically more 

accurate than those obtained with existing methods. 
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Fig. 8: Comparison of optimized PSF (solid) and that of Meyer’s 

DCF plus Hamming window (dashed) 
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