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ABSTRACT

Due to the inherent ill-posedness of PET reconstruction, the
reconstructed images usually have noise and edge artifacts,
and regularization techniques are needed to produce rea-
sonable results. In this paper, we propose a new minimum
cross-entropy (MXE) image reconstruction method for PET
based on the total variation (TV) norm constraint. The use
of TV is due to the fact that it can effectively reduce the
noise in 2D images while preserving edges. In addition, a
multiple level set method was incorporated into image re-
construction to identify the shape of the radioactive objects.
It is important for some special applications where the shape
of tumors should be identified. The initial emission rates
which used by multiphase level set method were estimated
by using discrete reconstruction method. The experimental
results show that the proposed method is more effective.

1. INTRODUCTION

The problem of reconstructing an unknown image from a
measurement vector is usually ill-posed and the reconstructed
images will have noise and edge artifacts. Therefore, the
regularization techniques or Bayesian approaches is needed
to produce reasonable reconstructions. The regularization
of the ill-posed problem requires smoothing homogeneous
areas of the object without degrading the edges, which are
very important attributes of the image. In the past decades,
there are abundant literatures that reported the edge-preserved
regularization methods, but most of them rely on informa-
tion from a local neighborhood to determine the presence
of edge[1, 2]. In this paper, we proposed a minimum cross-
entropy algorithm for PET image reconstruction using level
set method (LS-MXE). The method described here uses the
total variation (TV) as a prior to regularize the MXE al-
gorithm. The motivation for us to utilize the TV is that it
can suppress effectively the noise while capturing the sharp
edges without oscillation, since both noise and edges con-
tribute to high energy component. In addition, this paper
incorporates the multiphase level set method into PET im-
age construction. By this way, sharp boundaries between
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different tissues are directly given for PET image. It is men-
tion that our algorithm improve Lysaker’s algorithm [3], in
which all intensity values are assumed to be approximately
known. But in actual PET reconstruction, we only know the
projection data rather than the emission rates (density) and
the shape of radioactive. Our algorithm estimates the ra-
dioactivity densities by discrete reconstruction in advance,
and then level set method was used to describe the geome-
try of the different tissues in the reconstruction image. To
demonstrate the effectiveness of the proposed method, some
results of the application of LS-MXE reconstruction to sim-
ulated data are presented.

2. METHODOLOGY

In 1982, Shepp and Vardi [4] developed a Poisson model for
the PET process. In the Poisson model, the emissions are
modeled as a spatial inhomogeneous Poisson process with
unknown intensity. Maximum likelihood (ML) estimation
is a well established method in the field of statistics for es-
timating the value of an unknown parameter. The ML es-
timate of the activity x = {xj} is obtained by maximizing
the log-likelihood function of the measured emission data
y = {yi}, which is given by

L(x) =
∑

i

[−
∑

j

pijxj + yi ln(
∑

j

pijxj)− ln(yi!)] (1)

where pij is the probability that a positron emitted at pixel
j will be detected by detector pair i.

2.1. The cross-entropy algorithm with total variation reg-
ularization

The goal of iterative image reconstruction in emission to-
mography may be considered as minimizing a given dis-
tance measure between the measured photons and the for-
ward projections of the image estimate. This distance func-
tion can be shown to be the cross-entropy or Kullback-Leiber
(KL) distance between y and Px[5]. The KL distance be-
tween y and Px is given by

D(y,Px) =
∑

i

[yi ln yi − yi ln(Px)i − yi + (Px)i] (2)

II - 4690-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



where (Px)i denotes the ith component of vector Px .

(Px)i =
∑

j
pijxj (3)

The TV norm for two-dimensional case is defined as:

TV (f) =
∫

Ω

|∇f |dxdy =
∫

Ω

√
f2

x + f2
y dxdy (4)

where fx = ∂
∂xf , fy = ∂

∂y f . Pania evaluated the energy
function using a two-point difference in 2D as[6]:

UTV =
∑
i,j

√
(fi+1,j − fi,j)2 + (fi,j+1 − fi,j)2 + σ2

(5)
The parameter σ is equal to approximately 1% or less of the
expected maximum value of f . Too large value of σ will
smooth out the edges in the image [6].

The method described here is a new method with two
terms: a KL distance term and a TV penalty term for regu-
larization. The estimated image x̂ is given by

x̂ = arg min
x

(Jβ(x)) (6)

where Jβ(x) is the new cost function given by

Jβ(x) = D(y,Px) + βUTV (7)

where β is a weight parameter, which influences the regular-
ization term. Substituting Eq.(2) into Eq.(7), the first partial
derivative of Jβ for a given pixel xj is given as follows:

∂Jβ(x)
∂xj

=
∑

i

(
−yipij

(Px)i
+ pij) + β

∂UTV

∂xj
(8)

2.2. Multiphase level set method

The level set method proposed by Osher and Sethian is a
versatile tool for tracing interfaces separating a domain Ω
into subdomains[7]. Moving the interfaces can be done by
evolving the level set functions instead of moving the in-
terfaces directly. Let Γ be a closed curve in Ω ⊂ R2. We
define a φ as a signed distance function by :

φ(x) =
{

dist(x,Γ), x ∈ interior of Γ
−dist(x,Γ), x ∈ exterior of Γ (9)

Γ is the zero level set of the function φ. Once the level set
function is defined, we can use it to represent many piece-
wise constant functions. Assume that we have two closed
curves Γ1and Γ2, and we associate the two level set func-
tions φ1 and φ2. Then the domain Ω is divided into four
subdomains[8]:

Ω1 = {x ∈ Ω, φ1(x) > 0, φ2(x) > 0}
Ω2 = {x ∈ Ω, φ1(x) > 0, φ2(x) < 0}
Ω3 = {x ∈ Ω, φ1(x) < 0, φ2(x) > 0}
Ω4 = {x ∈ Ω, φ1(x) < 0, φ2(x) < 0} (10)

Using the Heaviside function, we can express x with possi-
bly up to four pieces of constant values as:

x = λ1H(φ1)H(φ2) + λ2H(φ1)(1 − H(φ2)) +
λ3(1 − H(φ1))H(φ2) + λ4(1 − H(φ1))(1 − H(φ2)) (11)

where

H(φ) =
1
2
(1 +

2
π

arctan(
φ

ε
)) (12)

ε ∈ (0, 1). We see that n level set function give the possi-
bility of 2n regions. If the true x needs less than 2n regions,
we can still use n level set functions since some subdomains
are allowed to be empty. The multiregional case is given by
[8]. Using chain rule [3], it is easy to see that

∂Jβ

∂φn
=

∂Jβ

∂x

∂x

∂φn
, n = 1, 2 (13)

here

∂x

∂φ1
= ((λ1 − λ2 − λ3 + λ4)H(φ2) + λ2 − λ4)δ(φ1)

∂x

∂φ2
= ((λ1 − λ2 − λ3 + λ4)H(φ1) + λ3 − λ4)δ(φ2) (14)

where the Delta function δ(φ) = H ′(φ)

δ(φ) =
ε

π(φ2 + ε2)
(15)

In this method, all intensity values λ must be approximately
known. Generally speaking, we only know the projection
data. Therefore, accurate estimation of the emission rates is
essential for the LS-MXE reconstruction performance.

2.3. Estimating the emission rate

The basic problem behind discrete reconstruction is to de-
termine the specific levels present in a reconstruction and
then classifying each pixel to one of these discrete levels
[9]. We borrow this way to estimate emission rate of each
pixel. This method includes two steps:

1. Optimization step by discrete method

We assume that each pixel has one of a fixed set of
known emission rates. The update equation for xj

can then be written as

x
(k+1)
j = arg min

q
[
∑

i

(pijq − yi log(pi+x(k) +

pij(q − x
(k)
j ))) + (r1v1(q, xj) + r2v2(q, xj))] (16)

The elicit of Eq.(16) by using the log-likelihood dif-
ference of Eq.(1). v1(q, xj) is the number of hori-
zontal and vertical neighbors of xj which do not have
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emission rate q , and v2(q, xj) are the number of di-
agonal neighbors of xj which do not have emission
rate q. r2 = r1/

√
2. we try all initial q, and select

the new density for pixel xj by a method which make
Eq.(16) minimization.

2. Densities estimation

If we define a region as the collection of all pixels
with the same emission rate, we obtain 2n different
regions in the reconstruction. Regions are allowed to
be empty. Let θ1, . . . θ2n denote the discrete emission
rates. We define projection matrix Q for the regions
such that Qiτ is the probability that an emission from
the region τ is registered by the ith detector.

pi+x =
∑

j

pijxj =
2n∑

τ=1

λτQiτ (17)

where Qiτ =
∑

{j:xj=λτ}
pij The update of emission

rate is given by

θ(k+1)
τ = arg min

x
{
∑

i

(Qiτx − yi log(Qi+θ(k) +

Qiτ (x − θ(k)
τ ))} (18)

Where x ≥ 0 insures the non-negativity of the emis-
sion rates. Emission rate θ will be returned to the first
step instead of q. After several iterations, one can get
some steady emission rates by these two steps.

The LS-MXE algorithm is written as follows:

1. Choose initial level set functions φn and �t

2. Estimating initial emission rate λ using Eq.(18)

3. Update the level set functions

φ(k+1)
n = φ(k)

n −�t
∂Jβ

∂φ
(k)
n

(19)

4. Reinitialize the functions φn according to [10].

3. SIMULATION

In our simulation experiments, we used a 96×96 pixels tho-
rax phantom to test the feasibility of our proposed method.
The relative activities of the elements are shown in Fig.1.
The projection space is supposed to be 139 bins and 180
angle evenly spaced over 180◦. The final reconstructed im-
age is set to a size of 96 × 96 pixel matrices. Fig.2(left)
shows the FBP image. About four density values and ba-
sic shape were approximately known from the FBP image.

Fig.2(right) shows the result of discrete reconstruction de-
scribed by section 2.3. The phenomenon of densities over-
lapping using discrete reconstruction is obvious in it. But
this method provides a good way to obtain the densities of
PET. The reconstructed images using LS-MXE algorithm
are shown in Fig.3. The iteration numbers are 140 for each
algorithm. The time step is 5, σ is 0.001, r1 is 1 and ε is
0.5 for all LS-MXE. We can see from Fig.3, with increasing
of parameter β, the smoothing effect is also more obvious.
TV regularization term smooths the image while preserving
the edges. LS-MXE reconstruction significantly improved
the quality of the image. The initial level set functions were
shown in Fig.4. The evolution of the two function φ1 and
φ2 are given in Fig.5.

Fig. 1. A simulated emission thorax phantom.

Fig. 2. (from left to right ) Reconstruction image using FBP
and discrete method.

4. CONCLUSIONS

In this paper, we proposed a novel algorithm (LS-MXE)
that combines the level set approach with minimum cross-
entropy algorithm based on TV norm regularization for PET
image reconstruction. This algorithm has three distinct char-
acteristics. First, the TV norm smoothes the image while
preserving the edges. Second, the multiple level sets were
used to represent the topology shape of interesting objects.
The last is the accurate estimation of the emission rate. The
experimental studies clearly show that the LS-MXE method
yields the reconstructed images with better contrast and res-
olution and the geometry is also sketched by two zero level
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Fig. 3. Reconstruction images using LS-MXE algorithm.
First row with β = 0 and the second row with β = 1.5.
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Fig. 4. (from left to right )Initial level set functions φ1 and
φ2, respectively.

set functions.
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