
EFFICIENT VIDEO RETRIEVAL BY LOCALITY SENSITIVE HASHING

Shiyan Hu

Department of Computer and Information Science
Polytechnic University
Brooklyn, NY 11201

shu@cis.poly.edu

ABSTRACT

In this paper, a new scheme for fast video retrieval is pro-
posed. In the scheme, a video is represented by a set of
feature vectors which are computed using the robust Alpha-
trimmed average color histogram. To efficiently retrieve
videos, the locality sensitive hashing technique, which in-
volves a uniform distance shrinking projection, is applied.
Such a technique does not suffer from the notorious “curse
of dimensionality” problem in handling high-dimensional
data point set and guarantees that geometrically close vec-
tors are hashed to the same bucket with high probability. In
addition, unlike the conventional techniques, the involved
similarity measure incorporates temporal order of video se-
quences. The experimental results demonstrate that the pro-
posed scheme outperforms the conventional approaches in
accuracy and efficiency.

1. INTRODUCTION

Retrieving videos with visually similar content is a very ac-
tive research topic. Numerous algorithms such as [1, 2,
3] have been proposed for efficient video retrieval in re-
cent years. Typically, prevailing algorithms first map video
frames to a feature vector space, and then visual similarity
is measured there. To compute the precise value of simi-
larity is usually computationally expensive, which is espe-
cially the case for query in large databases of high dimen-
sion. On the other hand, the precise value of similarity is
not required since feature vectors do not entirely capture
the characteristic of human visual system [1]. Therefore, it
is unnecessary to maintain full fidelity to the feature vector
representations, and approximation can be applied to reduce
computation cost [1]. Clearly, a major challenge in content-
based video retrieval is how to efficiently identify videos
similar to a given query. While the naive approach of se-
quential search is typically too inefficient to handle large
databases, the well-known spatial access methods (e.g., SR-
tree) which have been extensively studied by the database
community are useful in the context. Most spatial access

methods, however, suffer from the notorious “curse of di-
mensionality” in handling high-dimensional data point set
[4].

Recently, a new technique called locality sensitive hash-
ing has been proposed in [5] and improved in [6] for the pur-
pose of devising efficient algorithm for high-dimensional
nearest neighbor search. The technique theoretically en-
ables us to achieve worst-case O(dn1/(1+ε)) time for ap-
proximate nearest neighbor query over an n-point d- dimen-
sional database. This yields an approximate nearest neigh-
bor algorithm running in sublinear time for any ε > 0, ex-
cluding the preprocessing time [6]. [6] also experimentally
shows that the method gives significant improvement in run-
ning time over other methods such as SR-tree for search in
high-dimensional space.

Based on the locality sensitive hashing technique, we
propose a new method for efficient content-based video re-
trieval in this paper. In the method, a video is represented
by a set of feature vectors which are then approximated for
high efficiency through a uniform distance shrinking projec-
tion (which is a dimension reduction technique) involved in
locality sensitive hashing. Compared to other approaches,
the new method uses alpha-trimmed average (ATA) histograms
which outperform the conventional histograms in robust-
ness to the adverse effects of brightness/color variations,
occlusion, and edit effects on the color representation. In
addition, the proposed technique is robust against temporal
re-ordering of the video. In particular, the new method runs
considerably faster than conventional methods. Finally, it is
worth mentioning that [11] explores LSH in image retrieval,
however, neither ATA histogram nor temporal information
in video are considered.

The rest of the paper is organized as follows: Section 2
gives a high level description of the proposed video retrieval
algorithm. Section 3 describes the locality sensitive hashing
technique. Section 4 presents the experimental results.

II - 4490-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

2. FAST VIDEO RETRIEVAL ALGORITHM

2.1. Alpha-Trimmed Average Color Histogram

Assume that each video sequence is represented by a set of
high-dimensional feature vector. Color histogram is one of
the most commonly used image features in content-based
retrieval systems. [1] uses 178-bin color histogram on the
HSV color space to represent the quadrant of each frame
in a video and the quantization of the color space used in
the histogram is similar to [3]. However, applying simple
histograms like this is not robust (see [7, 2]) to the adverse
effects of brightness/color variations, occlusion, and edit ef-
fects on the color representation. For this reason, we adopt a
more robust feature called “Alpha-trimmed average” (ATA)
histogram [7]. [7] investigates such a histogram and shows
that it outperforms commonly used key-frame histogram. In
contrast to key-frame histogram, ATA histogram represents
the cumulative color information of all frames with a group
of frames (GoF). To this effect, a straightforward way is to
accumulate all pixel color values from all frames within a
GoF into a single histogram. The normalization version of
the resulting histogram is simply the average (mean) his-
togram. A potential problem for average histogram is the
sensitivity of the mean operator to outliers, as discussed in
[7]. A common solution for this problem is resorting to
median histogram rather than average histogram. In [7], a
family of ATA histograms is defined, which is generated us-
ing the trimmed mean operator [8]. An ATA histogram is
computed by sorting the array of frame histogram values
for each bin in ascending order and averaging central mem-
bers of the ordered array. Each bin j in the ATA histogram
is computed by [7]

αTrimHist(j, α) =
1

M − 2 · �αM�
M−�αM�∑

m=�αM�+1

h̃j(m)

(1)
where M is the number of frames in the GoF, and h̃j(m)
is the sorted array of frame histogram values for the jth
bin. The trimming parameter α (0 ≤ α ≤ 0.5) controls
data points excluded from the average computation, and the
trimmed mean operator reduces the adverse effect of aber-
rant data points through discarding an equal number of sam-
ples at either end of the sorted series [7]. Note that when
α = 0 (resp. α = 0.5), the resulting histogram is equiva-
lent to the average histogram (resp. the median histogram).
It is demonstrated in [7] that compared to using any single
frame histogram from GoF, ATA histogram eliminates the
effects of undesirable luminance, chrominance variations
within the GoF, and the true color content of the GoF is
accentuated by modifying α.

In our system, we group every LT (to be discussed soon)
frames into a GoF and to incorporate spatial information,
each frame and thus the GoF is partitioned into four equal-

sized parts. An ATA histogram is computed for each of the
four parts of GoF. The resulting four histograms are con-
catenated to form a feature vector of the GoF.

2.2. Algorithm At A High Level

A video is represented by a set of feature vectors, each of
which corresponds to a GoF. Basically, two video sequences
are similar if most of their feature vectors are geometrically
close. To efficiently measure the similarity, we must be able
to efficiently determine the nearest neighbors for a query
point. For this, standard spatial query techniques may be
applied. However, such techniques are too computationally
expensive and they do not perform well in high dimensional
metric space [4].

To efficiently determine the nearest neighbors of a high-
dimensional query point, we resort to the locality sensi-
tive hashing (LSH) technique, which has an interesting fea-
ture that geometrically close vectors are hashed to the same
bucket with high probability. Suppose all videos in the database
are hashed into an LSH H . Given a query video consisting
of w · TL frames, we are to find the most s similar videos in
the database. Assume that w feature vectors f1, f2, . . . , fw

of the query video are hashed into the buckets q1, q2, . . . , qw,
respectively. Since geometrically close items (i.e., the sim-
ilar frames) are expected to lie in the same bucket, we only
inspect vectors in buckets q1, q2, . . . , qw. A video is similar
to the query if they have many similar feature vectors, so
the most s similar videos can be simply computed as those
with s largest numbers of similar feature vectors. To im-
prove accuracy, we compute the distances between fi and
feature vectors in bucket qi for each i (note that if a video
does not have a feature vector in qi, the distance is ∞ for
this bucket), and compute the best s videos by summariz-
ing information from all buckets. That is, the similarity of
a video to the query is determined by the sum of the in-
verse of the distances corresponding to this video in each
qi (i = 1, . . . , w). To further reduce the effect of aberrant
frames, the worst and the best few distances are removed
from measuring the similarity.

2.3. Incorporate Temporal Information

A noteworthy issue is that temporal information is incor-
porated into the proposed method since temporal order of
video frames is important for some applications. To this
effect, a straightforward and common solution is to return
more candidate videos by modifying the system as a coarse
level retrieval followed by the fine level retrieval for the
resulting videos. The fine level retrieval can use the tech-
niques such as [2] which takes the temporal-order informa-
tion into account. The modified system should work well
since the frames in similar video should be similar even

II - 450

➡ ➡

if they are perturbed in temporal order. However, a bet-
ter strategy is to incorporate temporal information directly
into the system (i.e., everything is carried out in “coarse
level”). From the analysis in [9, 10], the ordinal feature
has superior performance to the motion and color feature
for the purpose of video copy detection. Basically, such a
feature combines both of the color and spatial properties of
the video. Following [10], our algorithm would ideally go
as follows. A frame fi is partitioned into four blocks and
its ordinal feature is computed by the ATA histogram hi,j

(j = 1, 2, 3, 4) for each block j (note that for simplicity, we
denote αTrimHist(j) by hj). Given two videos a and b
and their ordinal features fai, fbi for each frame i, the dis-
tance between two videos at any time point (i.e., frame in
this case) t is naturally defined by

Dist(t) =
1

LT

t+LT −�LT /2�−1∑
i=t−�LT /2�

|fai − fbi| (2)

where LT denotes the comparison period. Loosely speak-
ing, the above definition says that two videos are similar
at a time point if a few frames close to this time point are
similar.

Recall that a video is partitioned such that every LT

frames form a GoF. Each GoF is then mapped to a high-
dimensional feature vector by its four ATA histograms. The
above definition troubles us when comparing two feature
vectors. Recall that we compute only one histogram ĥj(t)
for all jth quadrant frames in the GoF, which can be loosely
regarded as the average of histograms for each individual
frame upon normalization, i.e., ĥj(t) ≈ 1

LT

∑t+LT /2
i=t−LT /2 hj(i),

j = 1, 2, 3, 4. However, Eqn. (2) requires computing the
distance between each individual frames of two videos. Though
such distance is bounded below by the distance between
histograms ̂haj(t) and ̂hbj(t), the latter, which is used in
our system, well approximates the former since consecutive
frames in a video are usually similar to each other.

3. LOCALITY SENSITIVE HASHING

Locality Sensitive Hashing (LSH) is a relatively new scheme
for approximate similarity search based on hashing. The ba-
sic idea is to hash the points such that “the probability of
collision is much higher for points that are close to each
other than for those that are far apart” [5]. It was orig-
inally introduced in [5] and then improved in [6] for the
purpose of devising efficient algorithm for nearest neigh-
bor search. In particular, it enables us to achieve worst-case
O(dn1/(1+ε)) time for approximate nearest neighbor query
over an n-point d-dimensional database. This yields an ap-
proximate nearest neighbor algorithm running in sublinear
time for any ε > 0, excluding the preprocessing time [6].

In [6], they show that the method gives significant improve-
ment in running time over other methods for search in high-
dimensional space based on hierarchical tree decomposition
such as SR-tree. For completeness, some details of comput-
ing LSH in [6] are included as follows.

We begin with several definitions in [6]. In the K-Nearest
Neighbor search (KNN), we wish to return the K points in
the database that are closest to the query point. The approx-
imate version ε-KNN of the KNN problem is that we wish
to return K points p1, . . . , pK such that the distance of pi to
the query point q is at most 1 + ε times the distance from
the ith nearest point to q. Recall that the distance is defined
by l1 norm in our case. Denote by C the maximum possible
histogram value.

We first embed our d-dimensional point set P = {p}
into the Hamming cube Hd′

with d′ = Cd, by transform-
ing each point p = (x1, . . . , xd) into a binary vector v(p) =
UnaryC(x1), . . . , UnaryC(xd) where UnaryC(x) denotes
the unary representation of x, i.e., a sequence of x ones fol-
lowed by C − x zeroes. It is easy to see that for any pair
of points p, q, dL1(p, q) = dH(v(p), v(q)) [6]. That is, the
embedding preserves the distances between the points. The
hash functions are defined as follows. For an integer l to
be specified later, choose l subsets I1, . . . , Il of {1, . . . , d′}.
Let p|Ij denote the projection of vector p on the coordinate
set Ij . Denote gj(p) = p|Ij . For this, we can think of gj(p)
as a dimension-reduction mapping of p.

For the preprocessing, we store each p ∈ P in the bucket
gj(p), for j = 1, . . . , l. Since the total number of buckets
(for each j) may be large, we compress the buckets by re-
sorting to standard hashing. LSH uses two levels of hashing
and we maintain a two-level hash table Tj for each j. Let
B denote the maximum bucket size of the latter hash table.
If a bucket size is larger than B, a new bucket of size B is
allocated and linked to and from the old one. To process
a query q, we search all indices g1(q), . . . , gl(q) until we
encounter K points or use all l indices (note that we differ
from [6] in this, which leads to good results in our case).
It remains to specify the choice of the subsets Ij . For each
j ∈ {1, . . . , l}, the set Ij consists of k elements randomly
sampled from {1, . . . , d′}. We are to choose optimal values
of parameters such that the probability that a point p close
to q will fall into the same bucket as q is maximized, and the
probability that a point p′ far away from q will fall into the
same bucket is minimized. Refer to [6] for further details.

4. EXPERIMENTAL RESULTS

In the experiments, we investigate the efficiency of the pro-
posed method versus some existing techniques. In our video
database, we collect about 500 video clips with length rang-
ing from 1 minutes to 20 minutes. Some of them are down-
loaded from the Web, and some of them are sampled from

II - 451

➡ ➡

Table 1. Comparison of algorithms in accuracy and query
time. In LSH-based technique, TL = 4.

Algorithm Accuracy Avg. query time
LSH-based (l = 2) 0.85 0.20
LSH-based (l = 3) 0.88 0.31
LSH-based (l = 4) 0.90 0.38

FastMap-based 0.89 0.43
PCA-based 0.85 0.96

the same sources with different coding formats, resolutions,
and slight color modifications. In our experiment, ATA color
histogram (with α = 0.2) is extracted as the low level fea-
ture for similarity measure and all histogram computations
are carried out in the YCbCr color space. The luminance
component is coarsely quantized to four uniformly spaced
bins to reduce sensitivity to variations in lightness. Each
chrominance channel is quantized to eight bins, yielding a
total of 256 bins for each histogram. Recall that each frame
is partitioned into four parts, so the dimension of each fea-
ture vector is 1024.

For comparison, we carry out the experiments using three
algorithms, namely, the LSH-based algorithm with differ-
ent l (recall that l is the number of hash tables each vec-
tor is hashed to), FastMap [12]-based algorithm and PCA-
based algorithm. Note that for LSH-based algorithm, l1 dis-
tance is used, but for FastMap and PCA-based algorithm, l2
distance is used. As two well-known dimension reduction
techniques, FastMap and PCA are applied directly to 1024-
dimensional feature vectors. For fairness, after dimension
reduction, the resulting lower-dimensional vectors are pro-
cessed into an LSH to support efficient spatial search. Other
SAM data structures are also applicable. To compare the
performance by using LSH and other SAMs is interesting,
however, this issue lies outside the scope of this paper. We
refer the interested readers to [6] for such comparisons.

In the experiment, 100 queries are randomly sampled
from the database for testing. The average efficiency and
accuracy for each technique is summarized in Table 1. Note
that in Table 1, TL is set to 4, which is experimentally deter-
mined as the best TL. For the proposed LSH-based method,
we find that the best l is 4.

A final remark is on determining the best TL in the pro-
posed technique. We compare the effect by using different
TL. Refer to Table 2 where we experimentally determine
that the best TL for the LSH-based method is 4.

5. REFERENCES

[1] S.-C. Cheung and A. Zakhor, “Efficient video similarity mea-
surement with video signature,” IEEE Transactions on Cir-

Table 2. Comparison of effects by different TL in LSH-
based technique, l = 4.

TL Accuracy Avg. query time
1 0.83 0.23
2 0.85 0.27
4 0.90 0.38
8 0.90 0.46
16 0.90 0.70

cuits and Systems for Video Technology, vol. 13, no. 1, pp.
59–74, 2003.

[2] C. Hoi, W. Wang, and M. Lyu, “A novel scheme for video
similarity detection,” Proceedings of International Confer-
ence on Image and Video Retrieval (CIVR), pp. 373–382,
2003.

[3] J. R. Smith, “Integrated spatial and feature image systems:
Retrieval, compression and analysis.” Ph.D. thesis Graduate
School of Arts and Sciences, Columbia University, February,
1997.

[4] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis
and performance study for similarity-search methods in high-
dimensional spaces,” VLDB, pp. 194–205, 1998.

[5] P. Indyk and R. Motwani, “Approximate nearest neighbors:
Towards removing the curse of dimensionality,” STOC, pp.
604–613, 1998.

[6] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in
high dimensions via hashing,” VLDB, pp. 518–529, 1999.

[7] A. Ferman, A. Tekalp, and R. Mehrotra, “Robust color his-
togram descriptors for video segment retrieval and identifica-
tion,” IEEE Transactions on Image Processing, vol. 11, no. 5,
pp. 497– 508, 2002.

[8] J. Bednar and T. Watt, “Alpha-trimmed means and their
relationship to median filters,” IEEE Trans. on Acoustics,
Speech, and Signal Processing, vol. ASSP-32, no. 1, pp.
145–153, 1984.

[9] A. Hampapur, R. Bolle, and K.-H. Hyun, “Comparison of se-
quence matching techniques for video copy detection,” Proc
of SPIE: Storage and Retrieval for Media Databases, 2001.

[10] A. Hampapur and R. Bolle, “Comparison of distance mea-
sures for video copy detection,” International Conference on
Multimedia and Expo (ICME), 2001.

[11] P. Indyk and N. Thaper, “Fast color image retrieval via em-
beddings,” Workshop on Statistical and Computational The-
ories of Vision (at ICCV), 2003.

[12] C. Faloutsos and K.-I. Lin, “FastMap: A fast algorithm for
indexing, data-mining and visualization of traditional and
multimedia datasets,” Proceedings of the 1995 ACM SIG-
MOD International Conference on Management of Data, pp.
163–174, 1995.

II - 452

➡ ➠

