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ABSTRACT 

In this paper, we present a novel video content analysis system. 

An innovative 2D to 3D parameter inference algorithm is 

presented. It is applied to the tennis player body shape modeling, 

after a coarse-to-fine analysis on real world sports video 

sequences. As the first step, the video shots are classified in 

coarse level. Only shots containing appropriate body shape size 

are retained for the fine-level analysis. The fine-level analysis 

begins with a video object (VO) segmentation stage to obtain the 

player body shapes. The VOs then undergo training and testing 

stages. The training VOs are classified into serving and non-

serving classes by Gaussian mixture modeling (GMM). The VOs 

in serving class are further clustered and the corresponding 3D 

parameters of a human body model are obtained manually for 

each cluster center. For a testing VO sequence, the VOs that 

contain servings are found by GMM and the initial 3D 

parameters are fitted to the closest matches to the cluster centers. 

Based on the initial guess, an innovative multidimensional 

optimization procedure is employed to obtain the 3D parameters. 

Experiments are performed on broadcasted tennis games and 

promising results are obtained. 

1. INTRODUCTION 

With the popularity of digital video recording, video content 

analysis has become a basic requirement for the indexing, 

retrieving and analysis of video sequences. There are two 

methodologies in video content analysis: one is through the 

features extracted from frame-based approach to obtain the 

coarse-level knowledge of the video contents. The other is 

through the object-based analysis so as to interpret the object 

behavior in a very fine level.  

Sports video clips are of specific interest in research due to their 

availability and moderate complexity. Most of the sports event 

detection efforts were in coarse-level based on frame features, 

such as [9, 11, 15], to name a few. Some of the projects are more 

concerned with the region or object based behavior analysis [13, 

1, 7]. Tennis video analysis was used to demonstrate ideas in 

many sports video content analysis projects. In [11], the tennis 

video clips were used to demonstrate the clustering method in 

finding out the structure of the video sequences by low-level 

features such as colors and their derivatives. Different modeling 

techniques, such as rule-based methods, HMM and DBN were 

compared in [15] with experimental examples for tennis video 

sequences. 

For the fine-level object-based analysis, the video objects need 

to be segmented first. The focused video objects in tennis video 

sequences are the player body shapes. Although the topic of 2D 

to 3D inference is rarely put in the sports video analysis, the 

model-based 2D to 3D inference has been the dominant 

approach for the human body modeling. In [2], the 2D 

projection of a 3D arm model was compared against 2D image 

features to provide update for the EKF filter for 3D tracking. A 

full 3D human body model was used in [17] for similar purpose. 

Except for tracking, 3D human body model is also used to infer 

the 3D information directly from 2D images. Machine learning 

methodology was first used to learn the probabilistic model of 

the 3D motion in [3].  Then the Bayesian method was employed 

to infer the real 3D motion of the testing sequences based on 2D 

measurement and a 3D skeleton model. A full 3D human body 

model, skeleton extraction and iterative closest point algorithms 

(ICP) were combined to estimate the 3D information directly 

from input monocular video sequence in [16]. 

The contributions of this paper are in two aspects. First of all, a 

novel coarse-to-fine framework is proposed to deal with the real 

world tennis video content analysis problems. By selecting 

appropriate shots for the fine-level analysis through coarse-level 

analysis, it fills the gap between coarse level analysis and fine 

level analysis that is present in many of the current research 

work. Secondly, an innovative video object (VO) based 2D to 

3D parameter inference scheme is proposed and tested to be 

effective in this paper.  Combining both VO segmentation and 

3D models, the proposed method is appropriate for VOs with 

articulated structure and complicated motion patterns. The tennis 

players are used as examples and the results shown are 

promising. 

In Section 2, we will give the detailed description of the coarse-

to-fine framework and VO-based 2D to 3D inference algorithm. 

The experimental results are provided in the Section 3, followed 

by the Conclusion and Discussion in Section 4. 

2. A COARSE-TO-FINE TENNIS VIDEO ANALYSIS 

SYSTEM 

2.1. System framework 

The system framework is shown in Fig 1. The system is divided 

into two big modules: the coarse-level module and fine-level 

module. In the coarse-level module, after the shot segmentation, 

the shots are classified into two different classes: one is the shot 

with large enough player body shape for further fine-level 

analysis, the other is all other shots. Again, the tool employed is 
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HMM. In the fine-level module, only the shots containing player 

body shapes are further processed. The body shapes are 

segmented out by our video object segmentation algorithms. The 

poses of the body shapes are further analyzed: they are first 

classified into serving and non-serving classes. Then the VOs in 

serving class are first clustered into clusters. A 2D to 3D 

inference is employed to infer the 3D gesture of the athlete 

during the serving. 

2.2 Coarse-level analysis 

The coarse-level analysis includes the shot segmentation and 

shot classification based on frame features. 

In the previous sub-section we have mentioned that we only 

want to choose the shots with body shapes of appropriate size so 

we can analyze the shape in the fine-level analysis. We generally 

have four shot classes: shots with appropriate body shapes (BS), 

shots containing far field (FF), shots with audience close-up 

(AC), and shots with audience far-shooting (AF).  

The AC and AF are removed first based on color and texture 

features. Then BS and FF shot classes are classified by Hidden 

Markov Models (HMMs). For details, please refer to [12]. 

2.3 Fine-level analysis 

Only the shots containing appropriate body shapes are kept for 

the fine-level analysis. The fine-level analysis is based on video 

objects: the video objects are first segmented out and then the 

2D to 3D model fitting is performed. 

2.3.1 Video object segmentation

In the fine-level analysis, the first step is video object (VO) 

segmentation. We have continuously developed VO 

segmentation algorithms over the years [5, 6, 4]. The VO 

segmentation can be performed either fully automatic or semi-

automatic based on the complexity of the shots. 

2.3.2 2D to 3D inference 

After obtaining the VOs, we want to infer reasonably accurate 

3D pose information from the 2D video object sequence. 

Specifically, since we are only interested in the video objects 

containing the servings, there are two problems that need to be 

solved: to identify the serving video objects and to infer the 3D 

parameters of the serving poses. 

2.3.3 Serving video objects classification 

In the VOs, a lot of other poses are present: playing with balls, 

standing around, walking, running, serving, etc. To identify the 

serving poses, we use the Gaussian mixture modeling (GMM). 

The algorithm is as follows: 

1. In the training stage, the parameters are obtained 

through training data for the Gaussian mixtures 

(GMs). A GM is obtained for the serving poses 

and another GM is obtained for all other poses. 

The feature used here is the classic Hu’s moments 

of the object shape. 

2. In the testing stage, maximum likelihood strategy 

is used for the input video object sequence. The 

probability of each VO to the serving pose GM 

and other pose GM is calculated and compared. 

Only when the maximum likelihood ratio of at 

least one VO exceeds a certain threshold, the 

sequence is declared to contain a serving pose.  

2.3.4 2D and 3D model fitting 

After the serving shots are found, we need to infer the 3D 

parameters from the 2D shape. Mathematically, this is a problem 

with multiple solutions for still images because the 3D object to 

2D image region projection is a multiple-to-one projection. For 

the video case, however, we have better chance since the motion 

of the object and/or the camera can provide more 3D information 

about the object of interest by revealing different parts of 3D 

object shape through time.  

2.3.4.1 The 3D human body model 

As shown in Fig. 2, the 3D body model consists of: head, upper 

arms, lower arms, body trunk, upper legs, lower legs and feet. 

This body parts are modeled by geometrical objects: the head, 

body trunk and feet are cubes of appropriate size and 

dimensionality ratio. The arms and legs are cylinders with 

different radii at two ends. All the joints, including the neck, 

shoulders, elbows, thigh sockets, knees and ankles, are modeled 

by spheres with appropriate sizes. Unlike other body parts, these 

joints do not participate in the motion: they are only used to 

visually fill the gaps between body parts so there will be no 

holes or gaps in the 2D shapes after the 3D to 2D projection.  

The model can be freely resized: the length of the body trunk 

cube is used as a major reference size parameter for all other 

body parts. The body parts are sized according to appropriate 

ratios to this parameter and the ratios are adjustable in certain 

ranges to fit body shapes of different players. Examples are 

shown in Fig. 2 (a) and (b). 

The motion of the human body is a typical articulated object 

motion. The most critical characteristics of the articulated 

objects is that the motion of every body part can be transformed 

to the global coordinate system by the concatenation of local 

coordinate systems: 

iiglobal XTTTX 110 ...... −=
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Body Shape
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Body Shape
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Fig. 1. The coarse-to-fine video content analysis system framework 
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For example, the global coordinate of a point on the lower arm is 

equal to the local coordinate of that point multiplied by the 

transforms of elbow, shoulder and body systems. 

A total of 22 degrees of freedom are defined: 6 for the whole 

body as a free rigid body, 2 for the head, 2 for the upper arms 

and thighs, 1 for the lower arms and lower legs, 1 for the feet. A 

typical walking human is shown in Fig.2(c). Including the body 

part size ratios and 3D model coordinates, there are altogether 58 

independent parameters. 

2.3.4.2 Initial parameter setup 

With the VO sequence and 3D human model ready, the 2D to 

3D inference algorithm is composed of two stages as shown in 

Fig.3. 

The first stage is the initial model fitting. The collected VO 

image frames are divided into two sets: one set is used for 

training and the other set is used for testing. The training VOs 

undergo cluster analysis. The features are the seven dimensional 

Hu’s moments and K-means clustering is used. The cluster 

centers are found and the VO that is closest to the cluster center 

is identified and considered as cluster center. Through a GUI 

that is specifically designed to let the user adjust the 3D 

parameters interactively, initial 3D parameters are manually set 

up for the cluster centers and kept for further use. 

2.3.4.3 3D-2D model fitting  

The second stage is 2D and 3D model fitting on the left VO data. 

Fitting a 3D model to a 2D image shape is a typical multi-

dimensional optimization problem. There is a classic solution 

available for this problem [10]. The algorithm is tailored to be 

more robust for our application: 

1. Given a sequence of tennis player VOs, every VO 

frame is compared against every cluster center 

obtained in the initial model fitting stage. The VO 

which has the shortest distance in feature space to one 

cluster center is selected as the “seed” frame, which is 

not necessarily the initial frame in the sequence.  

2. An iterative Nelder-Mead’s method [14] is used to fit 

the 3D model to the VO shape in the seed frame. The 

corresponding cluster center manually crafted 3D 

parameters are used as the initial guess for the 

iteration.  

3. The estimated 3D parameters obtained in Step 2 for the 

seed frame are used as the initial guess for the 

immediate neighboring frames on both sides of the 

seed frame. The same fitting procedure is used to fit 

the 3D model to the VO shapes 

4. Step 3 is repeated for every frame until all the frames 

in the sequence are finished. 

As the most critical part of the algorithm, the fitting procedure is 

described as following: 

1). A set of camera parameters are assumed. In the tennis games, 

the shots with interested body shape size are of approximately 

the same camera setup. So the camera parameters are set to be 

the same. The camera is assumed to be horizontal and point 

vertically into the image plane. There is no rotation between the 

world coordinate system and camera coordinate system. Thus the 

transformation from world coordinates to camera coordinates is: 

TXX wc +=
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2). The 3D model is projected to the image plane through the 

transformation defined in Step 1. The silhouette of the projected 

3D model and that of the corresponding VO are exclusively 

ORed (XOR) [8]. The number of the non-zero pixels is the 

matching error: 

� ⊕= VOel SSE mod

3). Because we have so many (58 in total) parameters. Directly 

putting all the parameters into the optimization procedure will 

easily result in local minimum trapping. So the optimization is 

performed in a coarse-to-fine style: first the variables related to 

the whole body including 3D model coordinates, body rotation 

angles and body size were aligned through the Nelder-Mead’s 

method. Then the remaining variables for the body parts, such as 

the arm and leg angles, were fine-tuned by the same method. 

This procedure can be run many rounds until no more change of 

matching error E being found or maximum iterations being 

exceeded. 

3. EXPERIMENTAL RESULTS

A total of approximately 250 minutes of tennis games were 

recorded and digitized to 352x240 MPEG1 format from 

Wimbledon 2004 tennis games. Four separate games were 

obtained with 8 players including both males and females. The 

video sequences are segmented into 1344 shots. The removal of 

audience related shots are very effective: 115 out of 121 

audience shots are detected. The coarse level HMM 

classification results for BS and FF shots are shown in Table 1. 

Table 1: Confusion matrix for BS and FF classification 

 BS FF 

BS 682 119 

FF 30 392 

As seen in Table 1, while the classification for FF shot are pretty 

accurate, the BS shots have a higher mis-classification rate. This 

is due to the size of the body shapes varies greatly across the BS 

shots: the BS shots with smaller player body shapes are more 

Fig. 2. The adopted 3D human body model: (a) The model in 

one setting (b) Model with different body part size ratios (c) A 

walking human

VO 

Clusterin

3D parameter 

setup  

VO clustering
Adoption of 

initial model 

parameters 

2D and 3D 

model fitting

Initial model fitting 

Fig. 3. 2D to 3D Inference for serving shots Algorithm 
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likely to be classified as FF shots with strong motion. 

Fortunately, the BS shots with small player body shapes rarely 

contain serving poses, hence the influence on the fine-level 

analysis is relatively minor. 

Due to the limitation of the size of this paper, only the final 2D 

to 3D fitting results in fine-level analysis is presented here. As 

shown in Fig.4, (a) shows a VO in serving; (b) shows the 

corresponding 3D model of the cluster center; and (c) is the final 

fitted model; (d) shows the initial matching; (e) shows the fitting 

after the coarse level fitting. It can be seen that the arms of the 

model is remarkably away from those of the VO. Finally, (f) 

shows the converged fitting result. Note the change of the body 

size and the adjustment of the arms. There is only one coarse-to-

fine round of model fitting necessary for this VO as discussed in 

the Step 3 of the fitting procedure–it is true for most of the VOs. 

The matching error as the iteration progresses is shown in Fig.5. 

The algorithm is stable: the average parameter estimation 

difference (over 10 times) is only 2.93%. 

4. CONCLUSION AND DISCUSSION

In this paper an innovative 2D to 3D human body modeling 

fitting algorithm is proposed, based on a comprehensive coarse-

to-fine video sequence analysis framework. The proposed 

scheme is shown to be effective and yield promising results on 

the demonstrated real world examples. The paper only employs 

the single-direction knowledge flow from coarse-level to fine- 

level. It is worthwhile to pursue the feedback from fine-level to 

coarse-level to improve the accuracy of the appropriate shot 

detection, thus further increases the robustness of the 2D to 3D 

parameter inference. 

Reference:  

[1] F. Cheng; W.J. Christmas, J. Kittler, Recognising human 

running behaviour in sports video sequences. ICPR’02, Québec 

City, Canada, Aug. 2002.  

[2] L. Goncalves, P. Perona, Monocular tracking of human arm 

in 3D. ICCV’95, Boston, USA, Jul.1995.

[3] N. Howe, M. Leventon, W. Freeman, Bayesian 

Reconstruction of 3-D Human Motion from Single-Camera 

Video. NIPS’99, Denver, USA, Nov.1999.  

[4] I. Karliga and J.-N. Hwang, A framework for fully automatic 

moving video-object segmentation based on graph partitioning 

and object tracking, IEEE MMSP’04, Siena, Italy, 2004. 

[5] C. Kim and J.-N. Hwang, Video Object Extraction for 

Object-Oriented Applications. Journal of VLSI Signal 

Processing, 29(1/2):7-22, Aug., 2001. 

[6] C. Kim and J.-N. Hwang, Fast and Automatic Video Object 

Segmentation and Tracking for Content-Based Applications. 

IEEE Tran. CSVT, 12(2):122-129, Feb. 2002. 

[7] D. Koubaroulis, J. Matas, J. Kittler, Colour-based object 

recognition for video annotation. ICPR’02, Québec City, 

Canada, Aug. 2002.. 

[8] H. Lensch, W. Heidrich, H.-P. Seidel, A silhouette-based 

algorithm for texture registration and stitching. Graphical 

Models 63, 245-262 (2001). 

[9] T. Lin, H.-J. Zhang, Automatic video scene extraction by 

shot grouping. ICPR’00, Barcelona, Spain, Sept. 2000. 

[10] D. Lowe, Fitting Parameterized Three-Dimensional Models 

to Images, IEEE Trans. PAMI, 13(5):441-450, May 1991. 

[11] H. Lu, Y.-P. Tan, Sports video analysis and structuring. 

Proc. 2001 IEEE Fourth Workshop Multimedia Signal 

Processing, Cannes, France, Oct. 2001. 

[12] Y. Luo, J.N. Hwang, Vido sequence modeling by dynamic 

Bayesian networks: a systematic approach from coarse-to-fine 

grains. ICIP’03, Barcelona, Spain, Sept. 2003.

[13] H. Miyamori, S.-I. Iisaku, Video annotation for content-

based retrieval using human behavior analysis and domain 

knowledge. ICAFGR’00, Grenoble, France, Mar.2000.  

[14] J. A. Nelder, R. Mead, A simplex method for function 

minimization. Comput. J. 7, 308-313, 1965. 

[15] M. Petkovic, V. Mihajlovic, W. Jonker, Techniques for 

automatic video content derivation. ICIP’03, Barcelona, Spain, 

Sept. 2003. 

[16] A. Sappa, N. Aifanti, S. Malassiotis, M. Strintzis, 

Monocular 3D human body reconstruction towards depth 

augmentation of television sequences, ICIP’03, Barcelona, 

Spain, Sept. 2003.

[17] S. Wachter, H.-H. Nagel, Tracking Persons in Monocular 

Image Sequences, CVIU 74(3):174-192, 1999. 

Fig.5. The matching error as iteration progresses

(a) (b) (c)

(d) (e) (f) 

Fig.4. The final fitting results of a serving pose. 
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