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ABSTRACT

VQ is a famous signal compression method. The encoding 

speed of VQ is a key problem for its practical application. In 

principle, the high dimension of a vector makes it very 

expensive computationally to find the best-matched template 

in a codebook for an input vector by Euclidean distance. As 

a result, many fast search methods have been developed in 

previous works based on statistical features (i.e. mean, 

variance or L2 norm) or multi-resolution representation (i.e. 

various pyramid data structures) of a vector to deal with this 

computational complexity problem. Therefore, how to use 

them optimally in terms of a small memory requirement and 

a little computational overhead becomes very important. 

This paper proposes to combine both 2-PM sum pyramid 

and (n n)-PM variance pyramid of a vector to construct a 

new mixed pyramid data structure, which only requires 

(k+1) memories for a k-dimensional vector. Experimental 

results confirmed that the encoding efficiency by using this 

mixed pyramid outperforms the previous works obviously.  

1. INTRODUCTION 

In a vector quantization (VQ) [1] framework, its encoding 

process is implemented block by block sequentially. The 

distortion between an n n input block and a codeword can 

be measured by squared Euclidean distance for simplicity as 

                                             (1) 

where I is the current image block, Ci is the i
th
 codeword, j 

represents the j
th
 element of a vector, k (=n n) is the vector 

dimension and Nc is the codebook size. Due to a high 

dimension k, it is very expensive to compute d
2
(I, Ci).  

  Then, a best-matched codeword (winner) with minimum 

distortion can be determined straightforwardly by 

                                           (2) 

where Cw means the winner and its subscript “w” is the 

winner index. This process for finding the winner is called a 

full search (FS). Once “w” has been found, which uses much 

less bits than Cw, VQ only transmits this index “w” instead 

of Cw to reduce data amount for image compression. 

Because the same codebook has also been stored at the 

receiver, by using the received index “w” to retrieval Cw at 

the receiver, it is very easy to reconstruct the image. 

Obviously, the principle of VQ encoding implies that only 

the sole winner Cw has to be found by an exact Euclidean 

distance computation but all other Ci (i w) has to be rejected 

actually. In other words, VQ encoding can also be viewed as 

a process for rejecting all non-best-matched codewords 

rather than finding a best-matched codeword. This property 

of VQ provides a possibility of estimating real Euclidean 

distance by an inexpensive computation to see whether it is 

really “large” enough so as to make a codeword rejection.  

Clearly, in order to high-efficiently estimate real Euclidean 

distance, the key issue is how to construct appropriate 

features or a pyramid data structure for a k-dimensional 

vector. This paper aims at enhancing 2-PM sum pyramid [8] 

by mixing it with a special (n n)-PM variance pyramid of a 

vector to improve the search efficiency further.  

2. RELATED PREVIOUS WORKS 

Because a k-dimensional vector can be equivalently viewed 

as a k-sample set, it is clear that the mean, the variance and 

L2 norm are its statistical features. They can be directly used 

to measure how different two vectors are. During a winner 

search process, suppose the “so far” minimum Euclidean 

distance is dmin. Based on the mean information, the previous 

work [2] proposed a rejection rule as: If 

holds, then reject Ci safely, where MI is the mean of an input 

image block I and MCi means the same for Ci. This is the 

famous ENNS method. Then, the previous work [3] 

proposed a supplementary rejection rule when ENNS 

method fails as: If                         holds, then 

reject Ci safely as well, where VI is the variance of I and VCi

means the same for Ci. This is the famous EENNS method. 

To improve [3] further, the previous work [4] proposed 

another additional codeword rejection rule when EENNS 

method also fails as: If                 holds, then 

reject Ci safely as well, where L2I is the L2 norm of I and 

L2Ci means the same for Ci. This is EEENNS method (i.e. 

equal-average equal-variance equal-norm nearest neighbor 

search). EEENNS method is the current fastest search 

method by only using the statistical features of a vector. 

EEENNS method needs three extra memories for storing the 

mean, the variance and L2 norm for each Ci. However, the 

previous work [8] showed that EEENNS method performs 

poor compared to the fast search methods using pyramid 

data structures.   

On the other hand, in order to realize a multi-resolution 

instead of a simple statistical feature description for a vector, 

a pyramid data structure can be taken into account naturally. 

Then, a 4-pixel-merging (4-PM) mean pyramid as shown in 

Fig.1 (a) is proposed in the previous works [5], [6]. 
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Fig.1. For an n n block, (a) a 4-PM mean pyramid (MP) 

with bottom level u1=log4(n n); (b) a 2-PM sum pyramid 

(SP) with bottom level u2=log2(n n)=2 u1; (c) a 4-PM 

mean-variance pyramid (MP+VP) with bottom level 

u1=log4(n n); and (d) a mixed pyramid with bottom level 

u2=log2(n n)=2 u1.  

A hierarchical rejection rule is set up in [5], [6] as 

(3)

Suppose MIv, m is the m
th

pixel at the v
th
 level in a 4-PM 

mean pyramid for I and MIv, m=( MIv+1, 4m 3 + MIv+1, 4m 2 + 

MIv,+1 4m 1 + MIv+1, 4m )/4 for m [1~4
v
]. MCi,v, m implies the 

same thing to Ci. Then Euclidean distance at the v
th
 level for 

v [0~u1] between the two 4-PM mean pyramids of I and Ci

is                         . Because dm,u1(I, Ci) = d(I, 

Ci), it is called as real Euclidean distance for the bottom level 

Lu1. For a 4 4 block, u1=2. 

Thus, at any v
th
 level for v [0~u1], if 4

u1 v
d

2
m,v(I, Ci)

>d
2
min holds, then the current real Euclidean distance d

2
m, u1(I, 

Ci) is definitely larger than d
2
min. As a result, the search can 

be terminated at this v
th
 level and Ci can be rejected safely. 

  In order to realize more resolutions by a pyramid data 

structure and meanwhile realize recursive computation in a 

memory-efficient way, a 2-PM sum pyramid as shown in 

Fig.1 (b) is proposed in [8]. A hierarchical rejection rule is set 

up as 

(4)

where Euclidean distance at the v
th
 level for v [0~u2] 

is                        , SIv, m is the m
th

pixel at the 

v
th
 level for I and SIv, m=(SIv+1, 2m 1 + SIv+1, 2m) for m [1~2

v
].  

SCi,v, m means the same to Ci. The real Euclidean distance 

d
2
s,u2(I, Ci) =d

2
(I, Ci) holds. For a 4 4 block, u2=4. 

Thus, at any v
th
 level for v [0~u2], if 2

(u2 v)
d

2
s,v(I, Ci)

>d
2
min holds, then the current real Euclidean distance d

2
s,u2(I, 

Ci) is definitely larger than d
2
min. As a result, the search can 

be terminated at this v
th
 level and Ci can be rejected safely. 

  Here, the Euclidean distance at (v+1)
th
 level for v [0~

u2 1] must be computed in the following recursive way 

(5)

  As interpreted in [8], this 2-PM sum pyramid only 

requires n n memories for an n n block and it can reduce 

the computational burden to about half compared to the 

conventional 4-PM mean pyramid. It is a very practical data 

structure for fast VQ encoding.  

  Actually, in addition to mean or sum, variance is also an 

effective statistical feature of a vector. Let P=(1,1, … ,1) in 

R
k
 space be a projection axis in R

k
 space, which is called as a 

central axis in [3]. From a viewpoint of the geometry, sum is 

the projection component of a vector onto P and variance is 

the orthogonal component from this vector to sum [10]. In 

other words, sum and variance of a vector can be viewed as 

an orthogonal decomposition for a vector on the axis P. 

Because sum and variance are orthogonal in R
k
 space, it is 

beneficial to combine them into the pyramid data structure.     

A straightforward combining way is proposed in [7] as 

shown in Fig.1 (c). For an n n block, two pyramids are 

constructed over it. The core 4-PM mean pyramid is the 

same as that in Fig.1 (a) but an auxiliary 4-PM variance 

pyramid is constructed as well. Suppose VIv, m is the m
th

pixel 

at the v
th
 level in a 4-PM variance pyramid for I and 

for m [1~4
v
], v [0~u1 1]. At the bottom level, VIu1, m=0

for m [1~4
u1

]. VCi,v, m implies the same thing to Ci. Then 

Euclidean distance at the v
th
 level for v [0~u1] between the 

two 4-PM variance pyramids is 

. For a 4 4 block, u1=2. Therefore, a composite Euclidean 

distance can be defined as 

. Then, a hierarchical rejection rule that is similar to Eq.3 is 

set up in [7] as  

(6)

Because                   is always true, it is clear 

that Eq.6 is more powerful for rejection than Eq.3.  

However, Eq.6 will certainly introduce much more 

memory overhead and computational overhead compared to 

Eq.3. First, a 4-PM mean-variance pyramid doubles the 

memory requirement for each codeword. And unlike the 

mean feature, the computation of variance is non-linear so 

that it is difficult to reduce this memory requirement by 

developing a memory-efficient storing way such as 2-PM 

sum pyramid in [8]. Second, because the input vector is 

unknown before encoding, its 4-PM variance pyramid must 

be constructed on-line, which will totally need (4
u1 1

+…+4
2

+4
1
+1) 7=(n n 1)/3 7 additions ( ), (4

u1 1
+…+4

2

+4
1
+1) 4=(n n 1)/3 4 multiplications ( ) and (4

u1 1
+…+4

2

+4
1
+1) 1=(n n 1)/3 1 square root operations (sqrt). For a 

4 4 block, it needs 35 “ ”, 20 “ ” and 5 “sqrt” operations. 

This is a large extra computational overhead. Third, the 

computational cost of D
2
mv, v(I, Ci) at each level also doubles 

that of d
2
m,v(I, Ci) so that it will also introduce a lot of 

overhead. From the experimental results in [7], 4-PM 
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mean-variance pyramid can improve the overall search 

efficiency by 15%~20% compared to 4-PM mean pyramid.  

3. PROPOSED METHOD

From the analysis above, it concludes that it is rather 
effective by combining an auxiliary 4-PM variance pyramid 
with a core 4-PM mean pyramid at the cost of a large 
memory and computational overhead. Therefore, how to 
improve these two pyramids further becomes very important. 
In order to enhance the core 4-PM mean pyramid, [8] 
proposed a promising 2-PM sum pyramid as shown in Fig.1 
(b) to compute Euclidean distance recursively, in which way 
no extra memory requirement is needed and about half of the 
total computational burden can be reduced. In contrast, 
4-PM mean pyramid cannot realize recursive computation at 
all in principle [8]. Therefore, it concludes that 2-PM sum 
pyramid should be adopted as a core pyramid. However, it is 
impossible to directly combine it with a 2-PM variance 
pyramid because of too much overheads.  
  Clearly, in order to reduce the overheads introduced by an 
auxiliary variance pyramid, it is only possible to make the 
variance pyramid “smaller”, which implies that it only has 
very few levels in it. The reason is that variance pyramid is 
constructed by non-linear operations. The special case is to 
construct a (n n)-PM auxiliary variance pyramid as shown 
in Fig.1 (d), which only has the top level but without any 
intermediate levels (Note: the value at top level here is 
usually different from that at top level in a 4-PM variance 
pyramid as shown in Fig.1 (b)). In Fig.1 (d), because the core 
2-PM sum pyramid is completed (i.e. with all intermediate 
levels) but the (n n)-PM variance pyramid is incomplete, it 
is called as a mixed pyramid due to this asymmetry .  

To use the mixed pyramid, firstly, it only requires one 
extra memory to store auxiliary (n n)-PM variance pyramid 
for each codeword. It is a very small memory requirement. 
Secondly, for an input block, it only requires (2 n n 1)
additions ( ), (n n) multiplications ( ) and one square root 
operations (sqrt) for on-line constructing its pyramid. For a 
4 4 block, it needs 31 “ ”, 16 “ ” and 1 “sqrt” operations. 
This is a small extra computational overhead. Especially, 
“sqrt” operation becomes much less. Thirdly, because only 
the rejection test at the top level is changed, it will not 
introduce any computational overhead for rejection tests at 
other remaining levels like [7]. Because the rejection tests are 
executed from the top level, this mixed pyramid would be 
more powerful for rejection than 2-PM sum pyramid.  

Based on Eq.4, a new hierarchical rejection rule can be set 
up as 

(7)

where VI is the variance of I and VCi means the same for Ci.
  Obviously, Eq.7 holds because the new inserted test is 
equivalent to EENNS method but mixed with a core 2-PM 
sum pyramid. From the concept of pyramid data structure, it 
is clear that a mixed pyramid in Fig.1 (d) is the minimum 
configuration by using a “so far” most efficient core 2-PM 
sum pyramid that has a maximum number of levels for an 
n n block and a “smallest” auxiliary (n n)-PM variance 
pyramid that guarantees the least memory overhead and 
rather less computational overhead. This mixed pyramid is a 

more promising data structure for fast VQ encoding. 
Based on the discussions above, a search flow can be 

summarized as follows: (1) Construct an accompanying core 

2-PM sum pyramid and an auxiliary (n n)-PM variance 

pyramid for each Ci off-line. For the core 2-PM sum 

pyramid, only store the odd terms but the even terms for 

v [0~u2] levels. It needs (n n+1) memories in total for each 

codeword. (2) Sort and rearrange all codewords by the real 

sum at L0 level in ascending order off-line. (3) For an input I, 

construct its accompanying core 2-PM sum pyramid and the 

auxiliary (n n)-PM variance pyramid on-line. Similarly, for 

the core 2-PM sum pyramid only store its odd terms but the 

even terms for v [0~u2] levels. (4) Find an initial nearest 

(NN) codeword CN among the sorted codewords by using a 

binary search, which is the closest codeword in terms of real 

sum difference                      being minimum. 

It needs log2(Nc) times comparisons (cmp). Then compute 

and temporally store “so far”               , d
2
v, min=

2
u2 v

d
2
min in order to simplify a future rejection test at the v

th

level for v [0~u2 1]. This step needs (2k 1) additions ( )

and (k+u2) multiplications ( ) operations. (5.1) Continue the 

winner search up and down around initial NN CN one by one. 

Rejection tests for each candidate codeword are executed 

from the top level towards the bottom level. At the top level, 

once                          holds, terminate search 

for the upper part of sorted codebook when i<N or the lower 

part when i>N; If winner search in both upper and lower 

directions has been terminated, search is complete. Clearly, 

the current “so far” best-matched codeword must be the 

winner. Then search flow returns to Step 3 for encoding 

another new input; (5.2) Else, for the remaining v [1~u2] 

levels, test whether              is true or not. If it is true, 

reject Ci safely. (Note, Eq.5 must be introduced here for 

computing d
2
s,v(I, Ci) recursively.) (6) If all tests fail for a 

rejection, it implies that current Ci is a better-matched 

codeword, then update d
2
min by d

2
s, u2(I, Ci) and all d

2
v, min for 

v [0~u2 1] again. Meanwhile, update the corresponding 

winner index “so far”. Then, return to Step (5.1) to test next 

codeword.  

4. EXPERIMENTAL RESULTS

To compare the search performance with previous works, 

simulation experiments using MATLAB are conducted. 

Codebooks of size 256, 512 and 1024 are generated using 

512 512, 8-bit Lena image as a training set based on [10]. 

Block size is 4 4. Because [8] has shown that 2-PM sum 

pyramid method outperforms EEENNS method, 4-PM 

mean pyramid method and [7] has shown that 4-PM 

mean-variance pyramid method outperforms 4-PM mean 

pyramid method, the performance comparisons are just 

made among 4-PM mean-variance pyramid, 2-PM sum 

pyramid and mixed pyramid method in this paper.  

Search efficiency is evaluated by total computational 

burden in terms of the number of addition ( ), multiplication 

( ), comparison (cmp) and square root (sqrt) operations per 

input vector, which consists of (1) on-line constructing the 

mixed pyramid for an input vector I; (2) finding the initial 

best-matched codeword CN and computing the initial d
2
min,
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d
2
v, min; (3) computing test condition for a possible rejection at 

each intermediate level in a pyramid method; (4) computing 

the real Euclidean distance at the bottom level and updating 

“so far” d
2
min, d

2
v, min again if current codeword is a better- 

matched one. The results are summarized in Table 1. 

From Table 1, it is clear that the mixed pyramid method 

achieves the best search performance, especially the number 

of multiplication ( ) operations can be reduced greatly. The 

reason is that it has a more powerful top level for rejection 

test compared to the 2-PM sum pyramid method. The reason 

is also that it can benefit from a high-efficient recursive 

computation using Eq.5 for rejection tests at all intermediate 

levels compared to a 4-PM mean-variance pyramid method 

that uses composite D
2
mv, v(I, Ci) in Eq.6.  

5. CONCLUSION

In this paper, a practical new mixed pyramid is proposed that 

can obviously improve the search efficiency of the previous 

works. Two issues are made clear. First, a pyramid data 

structure should be constructed by using both a core mean 

(sum) pyramid and an auxiliary variance pyramid. The 

reason is that the mean (sum) and the variance component of 

a vector are orthogonal in R
k
 space. Second, it is profitable to 

use the high-efficient 2-PM sum pyramid as a core pyramid 

because it can thoroughly exploit the linear property 

contained in itself to realize a recursive computation for 

Euclidean distance and provide a maximum number of 

levels. Meanwhile, it is also profitable to use (n n)-PM 

variance pyramid as an auxiliary variance pyramid because it 

just has a minimum number of levels so as to avoid the large 

overhead introduced by the non-linear property contained in 

itself. Actually, the mixed pyramid in this paper is consisted 

of a “largest” core sum pyramid and a “smallest” auxiliary 

variance pyramid over an n n block, which is a more 

reasonable configuration for pyramid data structure.      
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TABLE 1   

COMPARISON OF TOTAL COMPUTATIONAL BURDEN PER INPUT VECTOR 

Size Method Operation Lena F-16 Pepper Baboon

add 7936 7936 7936 7936 

mul 4096 4096 4096 4096 

cmp 256 256 256 256 

Full search 

sqrt 0 0 0 0 

add 381.2 317.8 399.3 1127.8 

mul 205.3 171.8 216.0 608.2 

cmp 37.9 33.2 41.1 105.2 

4-PM 

man-variance

pyramid 

sqrt 5 5 5 5 

add 358.5 297.8 392.0 1038.9 

mul 125.1 105.5 136.4 347.5 

cmp 66.0 58.0 72.7 179.2 

2-PM sum 

pyramid 

sqrt 0 0 0 0 

add 300.6 253.5 314.4 865.6 

mul 112.9 97.3 118.2 300.5 

cmp 52.6 46.0 57.5 154.9 

256 

Mixed 

pyramid 

sqrt 1 1 1 1 

add 15872 15872 15872 15872 

mul 8192 8192 8192 8192 

cmp 512 512 512 512 

Full search 

sqrt 0 0 0 0 

add 583.6 506.2 662.0 2049.1 

mul 317.0 276.3 361.0 1110.2 

cmp 61.5 55.9 71.2 197.2 

4-PM 

man-variance

pyramid 

sqrt 5 5 5 5 

add 556.9 497.2 661.9 1968.0 

mul 191.7 172.2 226.4 652.6 

cmp 106.1 97.8 125.1 340.0 

2-PM sum 

pyramid 

sqrt 0 0 0 0 

add 445.8 390.1 501.5 1569.4 

mul 163.6 145.3 183.5 538.0 

cmp 87.3 79.5 101.7 293.4 

512 

Mixed 

pyramid 

sqrt 1 1 1 1 

add 31744 31744 31744 31744 

mul 16384 16384 16384 16384 

cmp 1024 1024 1024 1024 

Full search 

sqrt 0 0 0 0 

add 847.4 838.4 1088.1 3684.8 

mul 464.9 461.5 598.8 2005.2 

cmp 96.1 97.2 124.3 365.6 

4-PM 

man-variance

pyramid 

sqrt 5 5 5 5 

add 820.3 826.0 1104.8 3450.2 

mul 282.1 283.7 376.3 1144.4 

cmp 166.2 168.7 218.4 623.0 

2-PM sum 

pyramid 

sqrt 0 0 0 0 

add 637.6 625.7 806.1 2766.1 

mul 232.7 228.9 292.0 944.5 

cmp 139.7 140.6 180.8 546.6 

1024

Mixed 

pyramid 

sqrt 1 1 1 1 

II - 400

➡ ➠


