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ABSTRACT

A classified context quantization (CCQ) technique is
proposed to code basic image VQ indexes in the setting
of high order context models. The context model of an
index is first classified into one of three classes accord-
ing to the smoothness of the image area they represent.
Then the index is coded with a context quantizer de-
signed for that class. Experimental results show that
CCQ achieves about three percent improvement over
the previous best results of image VQ by conditional
entropy coding of VQ indexes (CECOVI), and does so
at a lower computational cost.

1. INTRODUCTION

Vector quantization (VQ) has been intensively researched
for more than twenty years, and it has produced the
best performance in many practical problems [1]. How-
ever, for image compression, direct application of VQ
currently seems not to be the most efficient technique
compared to many transform coding methods such as
wavelet image coding. The reason for the inferior per-
formance of image VQ is operational, i.e., practical VQ
can’t afford to completely exploit the high-order pixel
correlations in images by using very large vector dimen-
sions. Many research efforts have been made to improve
the performance of image VQ. In a recent work [2], Wu
et al. developed a frame work of conditional entropy
coding of VQ indexes (CECOVI) and utilized a simple
Bayesian-type method to estimate high order condi-
tional probabilities of VQ indexes that explore inter-
codevector correlations of basic VQ. Their experimen-
tal results show about 20 percent improvement over the
previous best results of image VQ.

In this paper, we study the same image VQ indexes
problem as in CECOVI. First, we follow the same ar-
guments to generate VQ codevectors and their corre-
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sponding indexes. In general, VQ indexes are just la-
bels of codevectors, and they do not have physical sig-
nificance pertaining to the original signals. However,
in case of image compression, if the codevectors are ar-
ranged in ascending order of their average energy and
the corresponding indexes are interpreted as intensity
values of pixels, it can be observed that the indexes pre-
serve the basic structure of the original image. There-
fore, there must exist some structures between the in-
dexes which represent higher order pixel correlations.
Second, we investigate the same context models of VQ
indexes. Suppose a VQ index sequence are generated
by an ordered codebook in raster scan order. A mod-
eling context of four events {x1, x2, x3, x4}, which are
the immediate neighboring VQ indexes to the current
VQ index x, is studied:

x3 x2 x4

x1 x · · · ,
where x and xi, i = 1, 2, 3, 4 are drawn from alphabet
A = {1, 2, · · · , n}, and n is the size of the codebook.

In order to minimize the coding rate of VQ in-
dexes, the number of bits used to code the index se-
quence should be a function of p(x|x1, x2, x3, x4). But
p(x|x1, x2, x3, x4) is generally unknown in practice, and
has to be estimated on the fly based on past obser-
vations in the coding process. It is well known that
directly estimating p(x|x1, x2, x3, x4) has the ”model
cost” [2, 3] problem of high order context modeling.
In CECOVI, Wu et al. used Bayes’ theorem to tackle
the problem. The major downside of CECOVI is its
complexity.

A recent work [3] by Chen provides us another per-
spective to look at the above VQ index problem. Chen
introduced a general context quantization concept. In
this paper, we apply the context quantization tech-
nique to code image VQ indexes. We propose a new
method, classified context quantization (CCQ) to deal
with a variety of neighboring indexes that represent
blocks with distinct features of images such as edge or
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nonedge areas. In CCQ, a classifier determines the class
for the modeling context of four neighboring indexes.
Then the current index is coded with a context quan-
tizer designed specially for that class. As demonstrated
later, our CCQ method achieves better performance
than CECOVI with less complexity. The remainder of
this paper is organized as follows. To introduce nota-
tion and to be self-contained, we briefly describe the
context quantization technique in the context of image
VQ indexes in Section 2. We then discuss the classi-
fication of context models and the design of classified
context quantizers in detail in Section 3. The exper-
imental results are presented in Section 4 followed by
conclusion in Section 5.

2. CONTEXT QUANTIZATION

p(x|x1, x2, x3, x4) involves a space of n5 points, where
x, xi ∈ A = {1, 2, · · · , n}. Define the conditional set
C = {(x1, x2, x3, x4), xi ∈ A}, and the size of the set C
is N = n4. The basic idea of context quantization
is to find a partition of C, which we can denote as
M = {mk, k = 1, 2, · · · ,K}, such that K � N , and
all p(x|x1, x2, x3, x4), where (x1, x2, x3, x4) ∈ mk, can
be represented by one conditional probability p(x|mk).
The first step in the development of quantization tech-
niques is to define a distortion measure. Since the rel-
ative entropy D(p||q) is a measure of the inefficiency of
assuming that the distribution is q when the true distri-
bution is p [5], the relative entropy between p(x|x1, x2,
x3, x4) and its quantization value p(x|mk)

D(p(x|x1, x2, x3, x4)||p(x|mk))

=
∑

x∈A
p(x|x1, x2, x3, x4) log2

p(x|x1, x2, x3, x4)
p(x|mk)

(1)

was chosen in [3] as the distortion measure. The overall
quantization distortion can then be expressed by

D =
∑

(x1,x2,x3,x4)∈C
D(p(x|x1, x2, x3, x4)||p(x|mk))

× p(x1, x2, x3, x4) (2)

The principal objective of context quantizer design is:
for a given number of quantization levels K, find an
optimal partition M = {mk, k = 1, 2, · · · ,K} for C so
that the distortion defined by (2) is minimized. A Lloyd
style iterative algorithm was given in [3] to find optimal
context quantizers after the nearest neighbor condition
and the centroid condition for the design problem were
proved to be satisfied. From the centroid condition, we
can calculate the quantization value P (x|mk) for each
partition mk as follows

P (x|mk)

Classifier

xx33 xx22 xx44
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Fig. 1. Classified Context Quantization

=

∑
mk

P (x|x1, x2, x3, x4)P (x1, x2, x3, x4)∑
mk

P (x1, x2, x3, x4)
(3)

The Lloyd style iterative algorithm provides a gen-
eral guideline for finding optimal quantizers. However,
it is well known that the step of finding the optimal
partition for a given quantizer is very computational
intensive when too many training samples are involved,
which is the case of quantizing p(x|x1, x2, x3, x4), x, xi ∈
A. Furthermore, the neighboring indexes could repre-
sent blocks of an image with very different features. So,
image VQ indexes should be considered as samples from
a composite source. Those motivate us to develop the
following classified context quantization (CCQ) tech-
nique. CCQ can be viewed as the counterpart of clas-
sified vector quantization [4] in the setting of context
quantization.

3. CLASSIFIED CONTEXT QUANTIZATION OF
VQ INDEXES

3.1. Context Quantization Classifier

We first classify image VQ indexes into two groups:
nonedge and edge, according to the characteristics of
their corresponding codevectors. We define the mean of
each codevector Y = [y1, y2, · · · , yL] by m = 1

L

∑L
i=1 yi,

the variance σ2 = 1
L

∑L
i=1(yi − m)2, and the relative

variance δ = σ/m. An index associated with a codevec-
tor with δ < ε is classified as a nonedge index, otherwise
it is called as an edge index. Here, ε is a small number.
Denote E as the set with all edge indexes, and S as
the set with all nonedge indexes. Recall that A is the
complete index set of size n. Then, A = E + S. If the
size of S is r, the size of S is n−r. Normally, we choose
a small ε and make r small compared to n − r.

Nonedge regions of an image usually appear con-
tinuous. if the neighboring indexes are nonedge in-
dexes, it is highly possible that the current VQ index
is a nonedge index too. On the other hand, neighbor-
ing edge indexes make the current index unpredictable.
Therefore, with different neighboring indexes, p(x|x1,
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x2, x3, x4) should be estimated and quantized in differ-
ent ways. We classify the four-event context model of
the neighboring indexes into three different classes as
shown in Figure 1. If x1 = x2 ∈ S, the context model is
defined as a nonedge class. If x1, x2 ∈ S, but x1 �= x2,
the context model is said to be a midrange class. The
context model belongs to an edge class for all other
cases.

The nonedge class is the most straightforward case.
First, we estimate p(x|s) directly by counting the num-
ber of training samples that are classified into this class
since p(x|s), where s = x1 = x2 ∈ S and x ∈ A, has
a manageable size of n × r (< n2). Then we use an
arithmetic coder for p(x|s). The continuity of nonedge
regions makes it likely that maxx∈A p(x|s) = p(s|s),
and p(x|s) is a highly skewed probability for each given
s. We expect that the arithmetic coder would work
well on this class. For the midrange class and the
edge class, we design two context quantizers, CQ1 and
CQ2 respectively; then apply entropy coding. Details
is given in the next subsection. Context quantization
does not solve the zero frequency problem caused by
sample sparsity when estimating high-order conditional
probabilities. Zeros or very small numbers are not con-
sidered in the quantizer design process. For this case,
we use the gradient match method [7] to predict the
current index from its available neighbors, then per-
form entroy coding.

3.2. Context Quantization of Midrange and Edge Classes

Since a good estimation of p(x|x1, x2, x3, x4) requires
too large number of samples, we consider only two
conditioning events, i.e., we estimate p(x|x1, x2) for
both midrange and edge classes. Context quantiza-
tion for both classes is to find an optimal quantizer
p(x|mk), k = 1, 2, · · · , n, to represent all p(x|x1, x2),
for (x1, x2) ∈ mk. The quantization reduces the size
of context models from n × r2 to n2 for the midrange
class, and from n3 to n2 for the edge class. The Lloyd
style iterative algorithm given in [3] is used to design
the context quantizer. Recall that the iterative algo-
rithm converges to a local optimal value. It is very im-
portant to choose an appropriate initial quantizer. In
order to make arithmetic coding efficient for probability
p(x|mk), we choose an initial quantizer with p(x|mk),
k = 1, 2, · · · , n, highly skewed and centered at x = k.
Such initial quantizer can be obtained by the following
steps.

• Step 1: Use a sufficiently large set of images to
get a good estimate of p(x|x1, x2).

• Step 2: Partition the conditional set C = {(x1, x2),
xi ∈ A} of size n × r2 or n2 into M = {mk, k =

Table 1. Results for LENA and PEPPER

LENA PEPPER
Nonedge size 4256 2813

rate 0.099 0.108
Midrange size 4559 4092

rate 0.144 0.145
Edge size 4287 5512

rate 0.251 0.197
Zero freq. size 2900 3585

rate 0.355 0.318
Overall size 16384 16384

rate 0.202 0.198

1, 2, · · · , n} of size n such that for each (x1, x2) ∈
mk, maxx∈A p(x|x1, x2) = p(k|x1, x2).

• Step 3: Calculate the quantization value p(x|mk),
k = 1, 2, · · · , n, using equation (3).

3.3. Dealing with Zero Probabilities

Even with only two conditioning events, estimation of
p(x|x1, x2) through counting requires a very large num-
ber of samples. Plus, the training set may not be suffi-
ciently representative to cover all the cases of p(x|x1, x2),
x, x1, x2 ∈ A. It is possible that some of p(x|x1, x2)
have zero or very small frequency. Zero or very small
probabilities are not considered when the context quan-
tizers are designed. In other words, there is no quan-
tization value p(x|mk) to be assigned to any zero or
very small p(x|x1, x2). We need to find another way
to encode indexes with such context model of zero or
small probability. We re-examine the four-event mod-
eling context from a prediction point of view, i.e., we
try to predict the current index x from its neighboring
indexes (x1, x2, x3, x4) available for both encoder and
decoder by using the gradient match method [7]. Most
cases of zero or small probabilities come from the edge
class which represents a complex area of an image. A
prediction approach exploring the gradient continuity
property is expected to have better performance than
one using the spatial continuity property [6]. The total
gradient match distortion (gmd) is the sum of distor-
tions from vertical, horizontal and diagonal directions.
See [7] for details. The codevector with the smallest
gmd is chosen to be the reconstructed block whose in-
dex is the prediction of x, denoted as x̂. p(x|x̂) will
be used for arithmetic coding in the next step of the
encoding process.
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4. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed CCQ, 30
monochrome images (couple crowd barbara tiffany man
zelda lake mandrill boat, plus their 90o, 180o rotations)
are used as the training set. The LBG algorithm is
applied to build the codebook of size 256. The code-
vectors are then arranged in ascending order of their
norm. δ = 0.02 is used to classify the codevectors and
corresponding indexes. LENA and PEPPER are cho-
sen to be two test images in order to compare with
results in [2]. In Table 1, the number of VQ indexes
in three classes plus the zero frequency case and the
corresponding rates are presented. The total number
of indexes also includes the first row, the first column
and the last column of indexes that need to transmit
first using an basic probability model without consid-
ering the neighboring indexes. We compare our CCQ
method with CECOVI [2] in Table 2. Two to three
percent of decrease on coding rate is observed from the
proposed CCQ method.

Both CCQ and CECOVI require O(n2) memory to
store estimated probabilities. For CCQ, extra n2 + r2

memory is required to store context quantization infor-
mation for the midrange and edge classes. The com-
putational complexity of CCQ comes from the zero fre-
quency case where O(n) additions and comparisons are
needed to find the smallest gradient match distortion
for each index. As O(n) operations are required by CE-
COVI for every index in an image, the zero frequency
case in CCQ only constitutes about 20 percent of total
indexes for the image. Furthermore, the final results
of CECOVI are generated by a weighted sum of two
order-one conditional probabilities and one order-two
conditional probability for each index. Three weighting
functions need to be sought heuristically for every in-
dex in the image. Finally, in CECOVI, the arithmetic
coder for high-order conditional probabilities such as
p(x|x1, x2, x4) of size n4 needs to be implemented, and
CCQ only requires the arithmetic coders for order-one
conditional probabilities such as p(x|mk) of size n2. In
summary, it is fair to say that CCQ has less compu-
tational complexity with comparable memory require-
ment compared to CECOVI.

5. CONCLUSION

We propose a classified context quantization (CCQ)
method to code VQ indexes based on the context model
introduced in [2]. The context models of VQ indexes
are first classified into three classes according to the
smoothness of the image area that their neighboring
indexes represent. For the nonedge class, a simple

Table 2. Comparison of CCQ and CECOVI

CCQ CECOVI
block PSNR rate PSNR rate
size (dB) (dB)

LENA 4x4 30.38 0.202 30.55 0.208

(-0.6%) (-3.4%)

2x2 36.01 0.778 35.92 0.803

(+0.3%) (-3.1%)

PEPPER 4x4 29.77 0.198 30.01 0.202

(-0.8%) (-2.0%)

2x2 34.74 0.772 34.79 0.799

(-0.1%) (-3.4%)

order-one conditional probability is estimated for en-
tropy coding. For the midrange and edge classes, con-
text quantizers are designed by using the Lloyd style
algorithm proposed in [3]. To deal with zero frequency
cases, a gradient match method is utilized. The exper-
imental results show that the proposed CCQ method
reduces the bit rate of CECOVI by about two to three
percent for the similar distortion, with lower computa-
tional complexity and the same order memory require-
ment.
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