
MEMORY EFFICIENT SET PARTITIONNING IN HIERARCHICAL TREE (MESH) FOR

WAVELET IMAGE COMPRESSION

Harish Arora, Pramit Singh, Ekram Khan*

Department of Electronics Engineering
Aligarh Muslim University, Aligarh, India

 *ekhan@lycos.com

 Farid Ghani

School of Electronics and Electrical Engg.
Universiti Sains Malaysia,

 14300 Nibong Tebal, Penang, Malaysia

ABSTRACT

This paper presents a memory efficient version of set

partitioning in hierarchical tree (SPIHT). The proposed

coder termed as Memory Efficient SPIHT (MESH), uses

a single re-usable list instead of three continuously

growing linked lists as in conventional SPIHT. The list is

re-initialized at the beginning of each bit-plane (coding

pass) and is exhausted within that bit-plane itself. Another

feature of the proposed coder is that it uses a single pass

for each bit-plane by merging the sorting and refinement

passes of conventional SPIHT together. The re-

initialization of list in each bit-plane makes the proposed

coder inherently error resilient. The performance of the

proposed coder is measured in terms of coding efficiency

and the worst case memory requirements for list entries in

each bit-plane. The performance comparison with SPIHT

shows that the proposed algorithm results in 50-70%

memory saving while retaining the coding efficiency

comparable to SPIHT.

1. INTRODUCTION

The SPIHT algorithm [1] is a fast and efficient state-of-art

technique for image compression. Like EZW [2] , SPIHT

generally operates on an entire image at once. The whole

image is loaded and transformed, and then the algorithm

requires repeated access to all coefficient values. There is

no structure to the order in which the coefficient values

are accessed. The random coefficient access requirement

of the SPIHT algorithm hinders its use in certain memory-

constrained environments.

The capability to encode a large image without

storing the entire image in memory was an important

feature in the JPEG2000 requirements specification.

Though SPIHT [1] was a strong contender for

JPEG2000, but due to the use of pixel/set lists that

significantly increase working memory requirements, it

was subsequently rejected. Since then the need for

reducing the memory uses in zero-tree like algorithms is

realized. Embedded block coding with truncation

(EBCOT) [3] , which is included in JPEG2000, restricts

the memory usage through encoding of pixel blocks but is

of higher complexity due to the use of adaptive arithmetic

coding, multiple coding passes & use of rate distortion

optimizers.

The No List SPIHT (NLS) [4] is developed as a list

free version of SPIHT. It uses fixed size arrays in-place of

lists and the working memory is always fixed,

independent of the number of passes to be executed.

Another extension of the SPIHT algorithm in memory

constrained environment is proposed by Pearlman [5] , in

which coefficients are grouped in many small spatial

blocks in such a way that each hierarchical coefficient tree

appears in one of the spatial blocks. The basic SPIHT

algorithm is applied to each spatial block independently

before making the final bitstream, which no longer

remains progressive.

In this paper, our emphasis is to reduce the working

memory of the SPIHT algorithm by using a single re-

usable list. The proposed algorithm termed as Memory

Efficient SPIHT (MESH) uses a single list that is

initialized, updated and exhausted within the same bit-

plane. Within each coding pass, the list is initialized with

the wavelet coefficients of the LL-subband having

descendents. The significant coefficients corresponding to

a threshold are obtained by using the set-partitioning rule,

similar to that in SPIHT, but in a single pass by merging

the sorting and refinement passes of SPIHT together.

The remainder of the paper is organized as follows.

Section 2 contains a brief overview of the SPIHT

algorithm. The proposed MESH algorithm is described in

section 3. The working memory requirement of this coder

is calculated and compared with that of the SPIHT and

NLS algorithms in section 4. Experimental results are

presented in Section 5 followed by concluding statements

and future scope in Section 6.

2. SPIHT

The SPIHT consists of two main stages namely sorting

and refinement. For practical implementation, SPIHT

II - 3850-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

maintains three linked lists viz. the list of insignificant

pixels (LIP), the list of significant pixels (LSP) and the

list of insignificant sets (LIS). At the initialization stage,

SPIHT initializes the LIP with all the pixels in the highest

level of the pyramid (i.e. LL subband), the LIS with all

the coefficients at the highest level of the pyramid except

those, which don't have descendents, and LSP as an empty

set. During the sorting pass, the algorithm first traverses

through the LIP, testing the magnitude of its elements

against the current threshold and representing their

significance by 0 or 1. Whenever a coefficient is found

significant, its sign is coded and it is moved to LSP. The

algorithm then examines the LIS and performs a

magnitude check on all coefficient of set. If a particular

tree/set is found to be significant, it is partitioned into its

subsets (children and grandchildren) and tested for

significance. Otherwise a single bit is appended to the bit

stream to indicate an insignificant set (or zero-tree). After

each sorting pass SPIHT outputs refinement bits at the

current level of bit significance of those pixels which had

been moved to LSP at higher threshold, resulting in the

refinement of significant pixels with bits that reduce

maximum error. This process continues by decreasing

current threshold by factor of two until desired bit rate is

achieved.

Some of the drawbacks of SPIHT are as obvious.

Firstly, lists are initialized only once in the beginning and

they continue to grow during the encoding and decoding

process. This increases the memory requirements.

Secondly, once an element enters into LIP, at least one

‘zero’ bit per bit-plane is generated until it becomes

significant and is transferred to LSP. Thirdly, encoding

and decoding of a bit-plane depend a lot on the previous

bit-planes, as lists updated in previous bit-planes are used

in subsequent bit-planes which cause the error

propagation throughout the image.

3. MEMORY EFFICIENT SPIHT (MESH)

In this paper we propose a novel modification in SPIHT

algorithm such that the function of all three lists can be

performed by a single list. The list is re-initialized at the

beginning of each bit-plane to avoid the inter-dependency

on the previous bit-planes. The algorithm works as

follows.

After the ‘Nd’ level of wavelet decomposition of

input image, depending upon the value of the largest

wavelet coefficient, the initial threshold is calculated as 2n

where ji
ji

cn ,
),(

2 maxlog . The LL-sub-band is coded

separately. The coefficients of LL-sub-band are

represented in (n+1) bit sign-magnitude form. In the first

(most significant) bit-plane, the sign bit and the most

significant bit from magnitude of the LL sub-band

coefficients are embedded in the bitstream. In the

subsequent bit-planes, only the nth most significant bits of

LL-sub-band coefficient are transmitted. In order to

encode the remaining sub-band coefficients, they are

linked through spatial orientation trees with their roots in

the LL-sub-band. To define a uniform child-parent

relationship, it is assumed that first quarter of LL-sub-

band coefficients have no descendents and remaining

three-quarter of the coefficients have their children in sub-

bands of correspondingly same orientation.

A single list referred as List of Pixel Sets (LPS) is

used in this algorithm. At the beginning of each bit-plane,

LPS is initialized with address of those coefficients of LL-

subband that have decedents. For each entry in LPS, test

the significance of the set. For insignificant sets, a single

bit is appended to the bitstream to indicate a zerotree.

However, if a particular set is found to be significant, it is

then partitioned into two its subsets (children and

grandchildren). First the significance of each of the

children is tested and if a particular child is found

significant, its sign bit is transmitted and current threshold

is subtracted from its magnitude. Then the significance of

grandchildren is tested. If the set of grandchildren

(provided they exist) is found to be significant, the

addresses of children are added at the end of LPS. After

testing every entry of LPS (including those which are

added in the current pass), it is re-initialized and threshold

is reduced by a factor of two. The entire process is

repeated for the next pass (bit-plane). It should be noted

that same coefficients might become significant in more

than one pass, depending upon its absolute value. In order

to avoid the multiple transmission of its sign bit, sign bits

are masked (or flagged) once they are transmitted at the

first significant test of the corresponding coefficient. If in

the subsequent passes, the same coefficient again tests

significant at lower thresholds, the transmission of sign bit

is avoided as it has already been masked.

At the decoder, the reverse process is performed. At

the arrival of first significant bit of a coefficient, it is

reconstructed as . The decoder adds or subtract

to its current reconstructed value depending upon

whether it inputs significant bit in the current pass or not.

n25.1
12n

It can be observed that the working memory

requirement in any pass is proportional to the maximum

number of entries in LPS during that coding pass. Further,

since in MESH, LPS is re-initialized, the same memory

can be used in the next and subsequent passes, whereas in

SPIHT, the lists keep growing progressively thereby

increasing memory requirements. Additionally, the entire

encoding and decoding of a bit-plane is performed in a

single pass, whereas SPIHT requires two passes, sorting

and refinement. Another attractive feature of the MESH

II - 386

➡ ➡

algorithm is its improved error resilience. As the encoding

pass is independent of the previous passes, if an error

occurs in any pass, it will affect the decoding of that pass

only.

4. MEMORY ANALYSIS

In this section we will compare the memory requirements

of the auxiliary list(s) in MESH with that of SPIHT and

NLS algorithms. There are two types of memory

requirement in zerotree coders: fixed memory to store

wavelet coefficients and variable working memory to

store list entries. For the comparison purpose, we consider

only variable working memory requirements. Though

NLS does not use any lists, but needs fixed size arrays and

state tables. For an image of size , the working

memory requirement in NLS [4] is

NM

2164

MN
W

MNMN
M NLS bytes, where W is the

number of bytes used to store each wavelet coefficient

(say two bytes). This working memory is always fixed

and is independent of number of bit-planes to be

executed. However, in SPIHT and the proposed coder, the

size of required working memory at any instant depends

upon the current number of entries in the list(s). For the

purpose of comparisons, memory requirements at the end

of each pass (or bit-plane) and the maximum (or worst

case) memory requirement are considered.

4.1 SPIHT

In SPIHT three linked lists are used namely LIP, LSP and

LIS. Each entry in LIP and LSP is a single coordinate of a

wavelet coefficient whereas LIS also requires type (A or

B) information to distinguish nodes.

Let:

NLIP = number of entries in LIP.

NLSP = number of entries in LSP.

NLIS = number of entries in LIS.

c= number of bits to store addressing information of a

coefficient [2*log2(max(M,N))]

MSPIHT= total memory required in SPIHT (in bits).

Then

MSPIHT = c NLIP + (c-1) NLIS+ c NLSP (1)

Where each element in LIS requires (c-2) bits for

addressing, since it contains coefficients with descendents

and an extra bit is required for defining the ‘type’ of

entries.

In the worst case,

NLIP + NLSP = MN

NLIS = MN/4 (as the coefficients having no

descendents or the highest frequency sub-bands will never

enter into LIS.) Thus the maximum working memory

requirement in SPIHT is

4
)15(max MN

cM SPIHT (2)

4.2 MESH

In our proposed algorithm, we have used only one list

namely LPS. In the list, as entries correspond to address

of a wavelet coefficient (except the coefficients of LL-

sub-band and those which have no offsprings), so each

element can be stored by using only (c-2) bits. If NLPS be

the numbers of entries in LPS and MMESH (in bits) denotes

the total working memory required in the MESH

algorithm, then

 MMESH = (c-2) NLPS (3)

In the worst case,

 NLPS = MN/4

Thus, the maximum working memory requirement in

MESH is
4

)2(max MN
cM MESH

(4)

For example, for any 512 512 image, c=2*log2 (512)=18

bits, W= 2 bytes (say),
max
SPIHTM 729088 bytes

max
NLSM 294912 bytes

max
MESHM 131072 bytes

Thus, . It

should be noted that NLS uses fixed working memory

equal to . Thus it can be seen that the proposed

MESH algorithm has reduced memory requirement by

factors of 5.56 and 2.25 in comparisons to SPIHT and

NLS respectively.

1:25.2:56.5:: maxmaxmax
MESHNLSSPIHT MMM

max
NLSM

5. SIMULATION RESULTS

In order to compare the performance (in terms of memory

requirements and coding efficiency) of MESH,

experiments are performed for the 512 512 grayscale

Lena and Barbara images. For these experiments, we

used a five level decomposition with the 9/7 biorthogonal

filter [6] .

5.1 Memory Analysis:

The bit-plane wise working memory requirement

of the MESH and SPIHT algorithms for the first nine

passes of ‘LENA’ image is compared in Fig. 1. At the

end of each pass, based on the number of entries in the

corresponding list(s), MSPIHT and MMESH are evaluated

according to Eqn. 1 and 3 respectively for c=18 and are

plotted in this figure. It can be seen that the MESH

algorithm has considerably reduced working memory

requirement in comparison to that of SPIHT.

II - 387

➡ ➡

Pass-by-pass memory requirement

0

30

60

90

120

150

180

1 2 3 4 5 6 7 8 9

bit-plane number(MSB=1)

M
e

m
o

ry
 r

e
q

u
ir

e
m

e
n

t
(K

B

MESH SPIHT

Fig. 1: Pass-wise memory requirement of MESH and SPIHT

5.2 Rate-distortion Analysis:
The results in terms of PSNR of decoded image at various

bit-rates (up to 1.0 bpp) are compared with that of SPIHT.

These results are shown in Figs. 2 & 3 for Lena and

Barbara images respectively. It should be noted that these

results are without the use of any arithmetic coding. As it

can be seen that MESH has comparable performance to

that of SPIHT for Lena image, however has slightly

inferior coding efficiency for Barbara image at higher bit-

rates. Despite this negligible degradation of coding

efficiency, still the MESH is profitable over SPIHT due to

significant memory saving at higher bit-rates.

6. CONCLUSIONS

In this paper, we have presented a novel memory efficient

variant of SPIHT for wavelet image coding. The proposed

coder generates fully embedded bit-stream similar to

SPIHT, but performs only one pass in each bit-plane, as

against two passes of SPIHT. The most attractive feature

of the coder is its high memory efficiency while rate-

distortion performance comparable to that of SPIHT. It

uses only one list which is initialized at the beginning of

each bit-plane, updated and exhausted within the same

bit-plane. This makes the generated sub-bitstream of each

bit-plane independent from the other bit-planes. Thus the

proposed coder is inherently error resilient. This is in

contrast to SPIHT, in which each bit-plane uses the same

list updated from the previous bit-planes & hence has the

poor error resiliency. In future, we aim to extend this

algorithm for color image and video coding.

7. REFERENCES

[1] A. Said and W. A. Pearlman. A new, fast, and efficient

image codec based on set partitioning in hierarchal trees. IEEE

Trans. on Circuits and Systems for Video Technology, 6(3): pp.

243–250, June 1996.

[2] J. M. Shapiro. Embedded image coding using zerotrees of

wavelet coefficients. IEEE Trans. on Signal Processing, 41(12):

pp. 3445–3462, December 1993.

[3] D. Taubman, “High performance scalable image

compression with EBCOT”, IEEE Transaction on Image

Processing, Vol. 9, pp. 1158-1170, July 2000.

[4] F. W. Wheeler and W. A. Pearlman, “SPIHT image

compression without lists”, IEEE International

Conference on Acoustics, Speech and Signal Processing,

ICAASP 2000, Vol. 6, pp 2047-2050, September 2000.

[5] F. W. Wheeler and W. A. Pearlman, “Low memory

packetized SPIHT image compression”, 33rd Asilomar

Conference on Signals, Systems and Computers, Vol. 2,

pp 1193-1197, October 1999.

[6] M. Antonini, M. Barlaud, P. Mathieu, and I.

Daubechies. Image coding using wavelet transform. IEEE

Trans. on Image Processing, Vol. 1, No. 2, April 1992.

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1

P
S

N
R

 (
d

B
)

rate (bpp)

Comparision of MESH and SPIHT for Lena (512x512) image

MESH
SPIHT

Fig. 2: Rate-distortion performance comparison of

 MESH and SPIHT for Lena image

14

16

18

20

22

24

26

28

30

32

34

36

0 0.2 0.4 0.6 0.8 1

P
S

N
R

 (
d

B
)

rate (bpp)

Rate-distortion performance for Barbara (512x512) image

MESH
SPIHT

Fig. 3: Rate-distortion performance comparison of

MESH and SPIHT for Barbara image

II - 388

➡ ➠

