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ABTRACT 

This paper presents a noise estimation algorithm using multi-
resolution motion estimation in a video encoder. Firstly, the 
motion estimator finds minimum block-matching errors at the 
finest resolution and the middle resolution for each macroblock. 
Secondly, if the minimum block-matching error at the finest 
resolution of a certain macroblock is less than a particular 
threshold, the variance of the inter-macroblock is computed. And 
then, we employ the square of the minimum block-matching 
error at the middle resolution as a predictor of the variance of the 
desired inter-macroblock without noise. The noise variance in the 
macroblock can be estimated by subtracting the predictor from 
the variance of the inter-macroblock. Finally, the noise variances 
estimated only for the well-motion-compensated macroblocks 
are averaged in each frame. Experimental results show that the 
proposed noise estimation is very accurate with negligible 
computational cost. 

1. INTRODUCTION 

Input video sequences of a video encoder can be often degraded 
due to various noise sources. A main source of contamination of 
video sequences is the additive noise introduced by the channel 
in the conventional analogue transmission systems. The noisy 
video sequences, which are not only visually annoying, but they 
are also hard to be encoded efficiently owing to uncorrelated 
nature of noise, need to be sometimes digitally encoded in the 
receiver side. The main goal of pre-filtering is to remove as much 
high-frequency information as possible without compromising 
visual quality. 

A number of pre-filtering schemes have been developed [1-3]. 
The conventional pre-filtering schemes have been devised in the 
light of noise reduction itself rather than optimal combination of 
pre-filtering with a video encoder. Since the noise reduction 
operation has been thought of as a process independent of video 
encoding, the pre-filtering schemes have been usually cascaded 
with video encoders. However, in the cascaded structure, a video 
encoder becomes computationally heavier due to the additional 
pre-filtering complexity. 

Kim and Ra proposed a DCT-domain noise reduction scheme 
(DCTNR), which is gracefully embedded with a video coder [4]. 
They first applied the concept of the generalized Wiener filter [5] 
to a video encoder. The DCTNR accomplishes fast pre-filtering 
because all the processing is operated in the DCT domain simply 
by scaling the DCT coefficients. Simulation results show that the 
DCTNR noticeably outperforms the other pre-filtering schemes 
such as a spatial-domain adaptive Wiener filter [2] in terms of 
noise reduction and coding efficiency [4]. 

Most pre-filtering algorithms as well as the DCTNR assume 
that noise power, i.e., noise variance is already known prior to 
encoding. However, actual noise variance is practically 
impossible to be known in advance. Since an inaccurate noise 
variance different from the true noise variance deteriorates 
coding performance as well as noise reduction, a precise noise 
estimation algorithm is demanding.  

The organization of this paper is as follows. Section 2 
introduces previous algorithms. Section 3 presents the proposed 
algorithm. Section 4 gives simulation results. Finally, Section 5 
provides conclusion.

2. PREVIOUS WORKS 

There are two kinds of noise estimation: intra-image estimation 
and inter-image estimation [6-8]. Recently, research on noise 
estimation has been mainly focused on intra-image noise 
estimation because inter-image noise estimation requires more 
memory and is usually computationally heavier. Intra-frame 
noise estimation methods can be classified as smoothing-based 
methods and block-based methods [6-7]. In smoothing-based 
methods, the image is first smoothed, i.e., low-pass-filtered, and 
then the difference between the noisy and the filtered image is 
assumed to be the noise; noise is then estimated at each pixel 
where the gradient is less than a certain threshold. In block-based 
methods, the variance over a set of blocks of the image is 
calculated and the average of the smallest variances is taken as 
an estimate.  

Amer et al. proposed a block-based method that estimates the 
noise variance from the variances of a set of blocks classified as 
the most homogeneous blocks in images with smooth and 
textured areas [6]. The method selects intensity-homogeneous 
blocks in an image by rejecting inhomogeneous blocks using a 
new structure analyzer, which is based on high-pass operators 
and special masks for corners to allow implicit detection of 
structure and to stabilize the homogeneity estimation. However, 
it is still difficult to detect homogeneous blocks accurately in a 
noisy environment, and a false selection of the reference noise 
variance may often bring out a significant estimation error.    

On the other hand, Natarajan introduced an interesting noise 
estimation method for reducing additive random noise from 
signals using data compression [7]. However, his scheme needs a 
huge amount of computation due to a number of compression/ 
decompressions, and it does not provide the precise noise power 
of each image. Moreover, Natarajan’s scheme cannot be merged 
into the popular video encoders such as MPEG and H.26x 
encoders. To our knowledge, there are no schemes that estimate 
noise power exactly inside a video encoder, with small amount of 
computation.  

Song and Chun proposed an efficient noise estimation 
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algorithm, based on motion-compensated block differences 
obtained from the motion estimator in a video encoder, while 
having minor computational cost [8]. However, the algorithm 
still does not provide a solid noise prediction model proper for 
various kinds of video sequences.     

This paper presents an advanced noise estimation algorithm 
that utilizes some relevant information from the multi-resolution 
motion estimator in a video encoder. Firstly, minimum block-
matching errors at two different resolution levels, i.e., the finest 
resolution and the middle resolution, are extracted from the 
multi-resolution motion estimator. Secondly, for a well-motion-
compensated macroblock (MB), the difference between the 
variance of the inter-MB and the square of the minimum 
matching error at the middle resolution is calculated. Since noise 
and a desired block-matching error signal are generally 
uncorrelated, the variance of the inter-MB is assumed to be the 
sum of the noise variance and the variance of the desired inter-
MB without noise. We adopt the square of the block-matching 
error at the middle resolution as a predictor of the variance of the 
desired inter-MB. So, the difference between the variance of the 
inter-MB and the predictor can be the noise variance estimate. 
Finally, the differences of the MB’s, i.e., the estimated noise 
variances are averaged in each frame. The average is determined 
as the noise variance estimate of the frame. 

3. THE PROPOSED ALGORITHM 

In this paper, the proposed noise estimator is implemented in a 
video encoder where the DCTNR is embedded for noise 
reduction (see Fig. 1). Note that the DCTNR is known as one of 
good solutions of noise reduction. 

3.1. DCTNR 
In Fig. 1, we can find that the whole operation for DCTNR is 
equivalent to a unified scaling operation with a scaling matrix F
in the DCT domain, which is described as follows [4]: 

),(

1
1

),(
1

),(1
)(

2

2

2

2

lk

lk
lkS

k,lF
n

n

γσ
σ

γσ
σ

⋅+

⋅⋅+
= .  (1) 

In (1), if (k,l) is (0,0), S(k,l) is 0. Otherwise, S(k,l) is 1. So, F(k,l), 
i.e., (k,l)-th filter coefficient is determined depending on the 
signal-to-noise level and )(k,lγ . )(k,lγ  is a normalized 

element on a diagonalized matrix of DCT-ed covariance, and 
realistic covariance estimates for mean-subtracted intra and inter 

blocks can be found by using some training sequences [4]. 2σ
denotes the variance of the desired data without noise, and it is 

usually estimated by subtracting the noise variance ( 2
nσ ) from 

the variance of an input block, i.e., 2
eσ . Hence, 

}0,max{ 222
ne σσσ −= .  (2) 

2
eσ  can be computed easily. So, if 2

nσ  is known, F(k,l) is 

determined. As a result, a (k,l)-th coefficient of the DCT-ed input 
block E, E(k,l) is filtered simply as follows:

),(),(),(ˆ lkFlkElkE ⋅= .   (3) 

More detailed explanation about (1) is described in [4]. 
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Fig. 1. A video encoder employing the proposed noise estimator. 

3.2. Proposed Algorithm 

We propose a motion-compensated noise estimation algorithm 
based on multi-resolution motion estimation in a video encoder. 
We presented a multi-resolution block matching algorithm 
(MRBMA) that provides high computational speed and high 
estimation performance concurrently [9].  

3.2.1. MRBMA 

MRBMA consists of three levels. Prior to motion estimation 
processing, the coarser level frames of a current frame as well as 
a reference frame should be produced. The coarser level frames 
are constructed by a 2-dimensional low-pass-filter (LPF) and 
sub-sampling. In this paper, a 2×2 average filter is used for the 2-
dimensional LPF. So, the MB size becomes 16×16, 8×8, and 4×4
at level 0, 1, and 2, respectively. At level 2, two motion vector 
(MV) candidates are obtained on the basis of minimum matching 
error for the next level search. At level 1, the two candidates 
selected at level 2 and the other one based on spatial MV 
correlation at level 0 are used as the center points for local 
searches, and a single MV candidate is chosen for the next level 
search. Then, at level 0, the final MV is obtained from a local 
search around the single candidate. MRBMA outperforms the 
other multi-resolution motion estimation algorithms in terms of 
estimation accuracy and computational complexity. So, we 
employ the MRBMA for motion estimation in a video encoder of 
Fig. 1. 

3.2.2. Proposed noise estimation 
MAD (Mean of Absolute Difference) is normally used as a 
measure of block-matching error. At level 1, MRBMA finds a 
MV (MV(1)) with minimum MAD for each MB. The minimum 
MAD corresponding to MV(1), i.e., (p(1), q(1)) is described by 
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where )1(Ω  is the search ranges corresponding to three local 

searches at level 1, and ),()1( qpMAD  is defined as follows: 
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),()( nmI l
i  represents the intensity value at the position (m,n) of 

the i-th frame at level l. 
At level 0, MRBMA locates a MV with minimum MAD within 

a local search range around 2⋅MV(1), i.e., )0(Ω . The minimum 
MAD at level 0 is depicted as 
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where ),()0( qpMAD  is the MAD corresponding to (p,q) at 

level 0. Considering additive noise, the i-th input frame is re-
defined as follows: 
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,
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where ),()0(
, nmI orgi  denotes an original desired frame with no 

noise, and ),()0( nmη  is a noise component at the same location. 

Assume that the (i-1)-th frame is a reference frame for motion 
estimation. In this paper, we employ the (i-1)-th reconstructed 
frame for motion estimation at each level.  

From (6) and (8), 
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),(),( )0()0()0()0( qypxyx ++−ηη . In (8), it is assumed that 

),()0()0( yxηη ≅∆  because additive noise in the (i-1)-th 

reconstructed frame is already removed by the DCTNR in a 
video encoder. So, (8) can be approximated as  
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On the other hand, if signal and noise are uncorrelated, the inter-

MB corresponding to )0(
minMAD  has the following variance:  

222
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,   (10) 

where 2
)0(I∆

σ  and 2
nσ  are the variances corresponding to 

)0(I∆  and )0(η  of the MB, respectively. Assuming perfect 

motion compensation, i.e., 0)0()1( =∆=∆ II , (9) is re-written: 
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In this ideal case, since 2
)0(I∆

σ  is zero, 2
minσ  is equal to 2

nσ .

However, perfect motion compensation is generally difficult. So, 
if we predict 2

)0(I∆
σ  well, 2

nσ  can be derived. To prove this, we 

applied MRBMA to several video sequences without noise. The 
same experiment setup as Section 4 is employed. In this 
experiment, we examined the relation between 2

)0(I∆
σ  and 

( )2)1(
min,orgMAD  (see Fig. 2). In Fig. 2, the horizontal axis 

indicates ( )2)1(
min,

2
)0( orgI

MAD−
∆

σ  and the vertical axis indicates 

it histogram. Statistically, the probability that 2
)0(I∆

σ  is very 

close to ( )2)1(
min,orgMAD . So,  
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2
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∆
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On the other hand, )1(
minMAD  can be described as follows: 

α+≅ )1(
min,

)1(
min orgMADMAD .  (13) 

Since η(1)(.) is a 2-dimensional LPF-ed version of η(0)(.), α may 
be small in general. So, 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15

estimation error

fr
eq

ue
nc

y 
of

 o
cc

ur
re

nc
e

Fig. 2. Histogram of the estimation error. 
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Thus, since 22
min

2
)0(In ∆

−= σσσ  from (11), the estimated noise 

variance ( 2~
nσ ) of the current MB is obtained as follows: 
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The noise variance estimate of a frame can be obtained by

averaging 2~
nσ ’s of all MB’s in the frame according to (15). In 

order to minimize the effect of the motion error on the noise 

estimation, we need to consider the only MB whose )0(
minMAD  is 

less than a specific threshold T, i.e., the well-motion-
compensated MB. T is adaptively determined for each frame as 
follows: 

ε+= ][min )0(
min kMADT

k
,  (16) 

where ][)0(
min kMAD  denotes the )0(

minMAD  of the k-th MB and ε
is a proper offset. T computed in the current frame is used for the 
next frame. ε is set to 2 empirically. Therefore, we can obtain the 

reliable average of 2~
nσ ’s which projects noise power of the input 

frame.  
The proposed algorithm is summarized as follows (T is set to 

10 initially): 
1) Set k, num, and sum to 0. Set MIN to an infinity.   

2) For the k-th MB, ][)0(
min kMAD  is compared with T. If 

][)0(
min kMAD  is less than T,

sum = sum + ( )( )0,max
2)1(

min
2
min ασ −− MAD  and num=num+1. 

3) If ][)0(
min kMAD  is less than MIN, MIN = ][)0(

min kMAD .

4) If the k-th MB is a final MB, go to step 5). Otherwise, go to 
step 2) with k=k+1.  
5) T is updated to ε+MIN . The noise variance estimate is also 

updated to 
num

sum . Then, go to step 1) for the next frame.   

4. SIMULATION RESULTS 

We have used an MPEG-2 video encoder merged with the 
DCTNR as in Fig. 1. We select the following parameters for 
MPEG-2 encoding; GOP (group of pictures) size = 12 frames, 
distance between P-frames = 1 frames, and target bit rate = 
5Mbps. The horizontal/vertical search ranges of P-frames are set 
to ±63/±31. Well-known three MPEG-2 video sequences having 
various motion types are used; “football (foot),” “flower garden 
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Table I. Average values of 2~
nσ ,

nEµ , and 
nEσ .

2
nσ =0 

2
nσ =25 

2
nσ =49 

2
nσ =64 Video 

Sequence 
Algorithms 

2~
nσ nEµ

nEσ 2~
nσ nEµ

nEσ 2~
nσ nEµ

nEσ 2~
nσ nEµ

nEσ
Proposed 5.04 5.04 0.72 31.4 6.44 1.56 51.5 2.73 1.83 62.9 2.06 1.58 

foot 
SONEA 0.13 0.13 0.02 26.2 7.51 7.94 53.1 13.7 11.9 65.4 16.1 13.6 
Proposed 3.29 3.29 0.35 24.4 0.95 0.55 42.3 6.75 1.55 52.9 11.1 2.25 

fg 
SONEA 0.001 0.001 0.004 6.7 18.1 4.41 13.1 35.9 9.03 18.4 45.7 14.3 
Proposed 8.93 8.93 1.7 34.2 9.2 1.49 53.7 4.7 1.62 65.5 2.0 1.42 

m&c 
SONEA 2.27 2.27 0.3 24.6 5.6 7.3 45.5 10.6 12.3 56.7 12.2 8.7 

(fg),” and “mobile & calendar (m&c).” Each frame has a 
resolution of 720×480. By deliberately adding additive white 
Gaussian noise (AWGN) to the original MPEG-2 test sequences, 

we produced noisy video sequences whose 2
nσ ’s are set to 0, 25, 

49, and 64. 
To evaluate the performance of the proposed algorithm, the 

estimation error 22 ~
nnnE σσ −=  is first calculated. nE  is the 

difference between the true noise variance and the estimated 
noise variance on a single frame. The average 

nEµ  and the 

standard deviation 
nEσ  of the estimation error are then 

computed as follows: 
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Here, N is the number of frames for each sequence.  
Table I gives the evaluation results. In this experiment, α is set 

to 0. We could find that α of 0 rarely takes an effect on the 
overall estimation performance. In Table I, the proposed 
algorithm is compared with the structure-oriented noise 
estimation algorithm (SONEA) presented in [6]. The proposed 
algorithm is reliable for both high and low noise levels. Except 

when 2
nσ  is 0, the proposed algorithm is always superior to 

SONEA in terms of 2~
nσ ,

nEµ  and 
nEσ . It is notable that the 

proposed algorithm provides more accurate estimation 

performance as 2
nσ  becomes larger. Also, the proposed 

algorithm produces very small 
nEσ ’s in comparison to SONEA. 

For all the test sequences, the proposed algorithm provides much 
more steady and accurate estimation performance than SONEA, 
independently of variations of motion and texture.           

Table II shows that the combination of the DCTNR and the 
proposed noise estimation improves coding performance in an 
MPEG-2 video encoder. The peak signal-to-noise ratio (PSNR) is 
employed as an evaluation measure. NoNR stands for pure 
MPEG-2 TM5 without DCTNR. Ideal DCTNR assumes that 

actual 2
nσ ’s are known beforehand. Note that Ideal and the 

proposed algorithm provide almost the same visual quality as 
well as the same PSNR performance.   

4. CONCLUSIONS 

We propose an accurate noise estimation algorithm using multi-
resolution motion estimation in a video encoder. The proposed 
algorithm is based on the property that the variance of an inter-

MB is equivalent to the sum of the noise variance and the 
variance of the desired inter-MB because noise and a desired 
matching error signal are uncorrelated. Experimental results 
show that the estimated noise variances are very close to actual 
noise variances. Therefore, the proposed noise estimation is very 
useful for effective pre-filtering such as DCTNR.  

Table II. PSNR performance for two noise variances [dB]. 

Video 
Sequence 

Algorithms 2
nσ =0

2
nσ =64 

No NR 31.5 29.0 
Proposed 31.5 29.9 
SONEA 32.5 29.9 

foot 
DCTNR 

Ideal 31.5 29.9 
No NR 28.5 26.5 

Proposed 28.5 27.4 
SONEA 28.5 26.6 

fg 
DCTNR 

Ideal 28.5 27.5 
No NR 26.3 24.9 

Proposed 26.3 25.6 
SONEA 26.3 25.5 

m&c 
DCTNR 

Ideal 26.3 25.6 
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