
ON-CHIP CACHE ALGORITHM DESIGN FOR MULTIMEDIA SOC

Anne Pratoomtong, Yu Hen Hu

University of Wisconsin-Madison, Madison, WI 53706

pratoomt@cae.wisc.edu, hu@engr.wisc.edu

ABSTRACT

In order to optimally implement real time, high

throughput, data intensive multimedia applications, it is

crucial to optimize the performance of the memory sub-

system to minimize excessive off-chip memory bandwidth

subject to the constraint of available on-chip memory

cache size. This can be accomplished by customizing

algorithm transformation and designing customized cache

address mapping algorithm for specific class of

multimedia applications. In this paper, we propose an

algorithm transformation and customized cache mapping

to improve the data reusability and reduce address conflict

which in turn, reduces the cache miss and memory I/O

bandwidth for block-based full-search motion estimation

algorithm. Simulation results using test video sequences

demonstrate marked performance improvement.

1. INTRODUCTION

In modern SOC multimedia architecture, the memory sub-

system often occupies more than 50% of the chip area and

consumes even larger portions of power. Multimedia

algorithms such as video coding, 3D rendering often

require real time computing and high data throughput rate.

In order to optimally implement these data-intensive

multimedia applications, it is crucial to optimize the

performance of the memory sub-system to minimize

excessive off-chip memory bandwidth subject to the

constraint of available on-chip memory cache size.

Many hardware or software techniques for enhancing the

cache performance have been proposed. These include

hardware techniques such as pre-fetching, value

prediction, victim cache, etc.; and software techniques

such as loop transformation and software pipelining.

However, these existing hardware solutions are often

devised for general purpose computing and do not take

advantage of the deterministic data access patterns of

multimedia algorithms. Existing software solutions, on the

other hand, cannot address the needs to adjust the

algorithm execution order so that the data memory access

pattern best matches the characteristics of the underlying

memory sub-system. Hence, a globally optimal solution to

the data memory access problem in designing multimedia

SoC must include both the development of cache-aware

software and algorithm-specific hardware.

For general purpose computing, cache memory addresses

are often derived from logical linear addresses through

direct mapping, or various set associative mapping

schemes. Comparatively, direct map cache has faster

access time, less complexity, lower power consumption,

and is more suitable for SOC implementation where

power and area are the main constraints. On the other

hand, the direct mapping scheme tends to induce more

conflict misses. More importantly, these general cache

memory address mapping schemes can not take advantage

of the predictable memory address access pattern, and

hence often result in excessive cache misses and

unnecessary off-chip memory I/O. With the availability of

re-configurable blocks in modern system on chip (SOC)

design, it is now possible to design on-line re-

configurable memory address calculation unit that can

switch between different cache memory mapping schemes

based on programs that are being executed [4]. In this

paper, we will present a novel cache address mapping

scheme that will reduce conflict cache misses for a full-

search block based motion estimation (FBME) algorithm.

From the software aspect, we argue that memory access

must be taken into account as a design criterion when a

multimedia algorithm is mapped onto a processor array

architecture. In particular, the data access pattern should

be included as part of the dependence relations to

facilitate algorithm mapping. The impact of the

transformed algorithm on memory subsystem

performance should also be part of the criteria to evaluate

the quality of a particular algorithm transformation

methodology. In this paper, we present the optimization

of FBME algorithm base on the characteristic of the data

access pattern which reduces the memory bandwidth

substantially.

2. CASE STUDY: FBME ALGORITHM

FBME algorithm produces a motion vector (MV), which

yields minimum mean-absolute distortion (MAD)

between current block and the (2p+1)2 candidate blocks

II - 3370-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

within the search area, for each of the N × N block of

pixel in the current frame. Figure1 shows the high-level

language representation of FBMA. It can be seen that the

pixel in the current frame is used without overlapping and

to complete ME for one block, each pixel in a current

block is used repeatedly (2p+1)2 times. In otherworld, the

life span of the pixels in each block is the time it is used to

complete the ME for one block. Therefore, as long as the

cache is big enough to store one current block, the

temporal locality of the current block is fully exploited i.e.

each pixel in the current frame can be reused for each

iteration. On the other hand, it is difficult to fully exploit

the temporal locality of the pixel in search frame since

pixel in each search block is overlapped when used. In

order to complete ME of one block, (2p+1)2 N2 pixel need

to be accessed but only (N+2p)2 pixel exist per search

area. The redundancy accessed get more severe as the

block size increase and thus, waste a lot of memory

bandwidth. Consider when p = n/2, the ratio of the pixel

accessed per block and pixel exist per block is (N+1)2 /4.

Figure1. Six-level nested Do-loop FBME algorithm.

3. ALGORITHM ANALYSIS AND

TRANSFORMATION

Many multimedia applications contain nested do loop

construct. Therefore the data memory access pattern can

be evaluated statically by an equation during design time

and represented as a function of loop parameters. An

Access Temporal Locality Period (ATLP) can be derived

form the access time equation. ATLP = 1 means the data

accessed at time t is also access at time t+1. This will save

the off-chip I/O memory bandwidth since the data is read

from the cache only one time but it can be used for many

iterations until a new data is requested. This in turn will

also reduce the power consumption. Once the ATLP is

known, the designer can optimized the algorithm in order

to reduce the ATLP. From figure1, the access time

equation t(i,j,m,n,h,v) can be written as follows

t(i,j,m,n,h,v) = j + iN + (n+p)N2 + (m+p)N2(2p+1)

 + hN2 (2p+1)2 + v N2 (2p+1)2Nh

ATLP of the pixel in the current frame and reference

frame can be found using the access time equation as

follows

ATLPCurr = t(i,j,m,n+1,h,v) - t(i,j,m,n,h,v) = N2

ATLP1Ref = t(i,j,m,n+1,h,v) t(i,j,m,n,h,v) = N2

ATLP2Ref = t(i,j,m+1,n,h,v) t(i,j,m,n,h,v) = N2 (2p+1)

ATLP3Ref = t(i,j,-p,-p,h+1,v) t(i,j,p, p,h,v) = N2 (2p+1)

ATLP4Ref = t(i,j,-p,-p,h,v+1) t(i,j, p,p,h,v)

= N2Nh (2p+1) 2 2pN2

The current frame pixels have a fix ATLP and their

temporal locality can be fully exploit when the cache size

is big enough to store the entire current block. The

reference frame pixels’ ATLP, on the other hand, can not

be completely determined even the on-chip cache stores

the entire reference frame block. This is because many

reference frame pixels belong to overlapped reference

frame blocks and will be used during different reference

frame block ME computation. Given these observations,

the goal is to transform the FBME algorithm to reduce

ATLP of the reference frame pixels. Unfortunately, the

details of the transformed algorithm have to be omitted

due to space limitation. We called the reduction of

ATLP1Ref and ATLP2Ref as R1 and R2 algorithm

optimization respectively. We only consider the reduction

of ATLP1Ref and ATLP2Ref because ATLP3Ref is the same

as ATLP2Ref and ATLP4Ref is too large and depend on Nh

which makes it unpractical to optimized as it requires a lot

more storage unit for partial MAD and yields more

complex program.

4. DATA AND RESULTS

Table1 give the comparison of the number of reads per

block and number of increasing partial MAD storage unit

with respect to the number of partial MAD storage unit of

the original FBME algorithm for each optimization level.

Table2 shows the resolution of each video format and

Table3 shows the bandwidth for each optimization level.

Optimization

level

No

optimization

R1

optimization

R2

optimization

#read/block (2p+1)2 N2 2N2 (2p+1) (2p+N)2

#increasing

register
- N (2p+1)2-1

Table1. Amount of I/O VS optimized algorithms

We calculate the worst case bandwidth for standard video

format by assume that bus width = 1 byte. We also

assume that all the data are available in memory. The

bandwidth is equal to xNvNhf where x is the number of

read per block shown in table 1 and f is frame rate.

II - 338

➡ ➡

Reducing the ATLP to 1 not only reduces the memory

bandwidth required, it also reduces the address and data

bus transition which in turn reduce the power

consumption.

Resolution
 Format

Pels lines Block size Frame/sec

QCIF 176 144 8 29.97

CIF 352 288 16 29.97

NTSC 480 480 16 29.97

HDTV 1920 1080 32 30

HDTV 1280 720 32 60

Table2. Resolution of different video format.

Bandwidth (pixel/sec)
Format

No optimization R1 R2

QCIF 6.15E+07 1.37E+07 3.04E+06

CIF 8.78E+08 1.03E+08 1.22E+07

NTSC 2.00E+09 2.35E+08 2.76E+07

HDTV 6.77E+10 4.11E+09 2.49E+08

HDTV 6.02E+10 3.65E+09 2.21E+08

Table3. Off-chip bandwidth requires.

In SOC, the main bandwidth bottleneck lies on the chip

boundary. It is costly to bring the data from off chip.

Therefore, we would like to minimize the off chip

bandwidth by algorithm transformation as we did earlier.

Figure2 shows the effect of the algorithm optimization to

the off chip memory bandwidth with various on chip

cache size. In order to show the effectiveness of the

algorithm transformation, we again assume worst case

scenario when the bus with is 1 byte.

The minimum off chip bandwidth required to perform

FBME on a QCIF data format shown by the horizontal

dash line in figure2 is the rate to bring one frame into the

on chip cache which is equal to 176 144 29.97 byte/s.

One can see that for current frame access, when the cache

size is greater or equal to ATLPCurr which is 258 or 8 in

log2 base, the minimum bandwidth is achieved. For

reference frame access, fortunately, the cache size does

not have to be as big as ATLP4Ref to achieve the minimum

off chip bandwidth. From figure2, cache size equal to

2ATLP2Ref (cache size = ATLP2Ref is vertical line at

12.08) can achieve the minimum off chip bandwidth.

Figure3 show the relationship between the cache size and

the off chip memory bandwidth require to perform FBME

on a HDTV data format with the different optimization

level of the algorithm transformation. One can see, for

current pixel access, that the minimum bandwidth (show

by the horizontal line) can not be achieved even though

the cache size is greater or equal to ATLPCurr which is 64

or 6 in log2 base (show by the vertical line) for this case.

This indicates that the conflict miss occurred. For

reference pixel access, the R2 optimization out perform

R1 optimization and no optimization. However, even

though the cache size that require to achieve the minimum

off chip bandwidth is much smaller than ATLP4Ref, it is

much larger than the case for QCIF data format (57

ATLP2Ref).

CACHE SIZE VS OFFCHIP BW

5

5.5

6

6.5

7

7.5

8

8.5

9

5 7 9 11 13 15 17

CACHE SIZE (LOG2)

L
O

G
1

0
(O

F
F

C
H

IP
 B

W
)

B
Y

T
E

/S
E

C

REFL0

REFL1

REFL2

CURRL0

CURRL1

CURRL2

Figure2. Data format is QCIF(176 144) with block size =

16 and frame rate = 29.97 frame/s

CACHE SIZE VS OFFCHIP BW

7

7.5

8

8.5

9

9.5

10

0 5 10 15 20

CACHE SIZE(LOG2)

L
O

G
1

0
(O

F
F

C
H

IP
 B

W
)

B
Y

T
E

/S
E

C

CURRL0

CURRL1

CURRL2

REFL0

REFL1

REFL2

Figure3. Data format is HDTV(1920 1080) with block

size = 8 and frame rate = 30 frame/s

5. MEMORY SIZE AND MEMORY MAPPING

SYNTHESIS

There are 3 cache misses type, cold miss occur when the

data is reference for the first time, capacity miss occur

when the cache is not big enough to hold all the data, and

conflict miss occur when the data is map into the same

cache location and interfere with each other. There is no

capacity miss if the cache is big enough to hold the whole

working set. Unfortunately, it is almost impossible to have

such a big cache since for multimedia application; the

working set is quite large. However, most of the

II - 339

➡ ➡

multimedia algorithm accesses a data in a regular stride

pattern and thus the cache only need to be as big as ATLP

to reduce the capacity misses. We call this cache size as a

target cache size. The conflict miss, however, does not

depend on cache size. Even though the cache size is equal

to the target cache size, the conflict miss can occur and

mostly will be severe since it will repeat regularly as the

access pattern. If the cache is at target cache size and there

is a conflict miss occur, the problem lies in the mapping

i.e. the mapping does not result in a uniform address

distribution. Figure2 show an example for ideal case

where there is no conflict miss when the cache size is at

the target cache size. However, the conflict miss is

sensitive to the block size and frame size and thus can

occur when these parameters change. For a 2 dimension

array data such as image, the data is mostly store in the off

chip memory in a raster scan order and should remain that

way for compatibility. However, we can modify the

address mapping of the on chip cache. Let’s consider a

simple example of performing FBME on an image with

N=4, Nv=3, Nh=3. Since the access pattern is the same

for all current pixels, we can consider only one block.

Since ATLPCurr = N2, the target cache size in this example

is 16. Follow the linear mapping convention, we can see

that pixel at the memory location 0-3, 12-15, 24-27, 36-39

are accessed and thus will map to the cache location 0-3,

12-15, 8-11, 4-7. There is no interference and the address

is uniformly distribute in the cache and thus, with cache

size = ATLPCurr, the minimum cache miss is achieve

which in turn save the off chip bandwidth. However, if

the Nh is changed to 2, the address is mapped to the cache

location 0-3, 8-11, 0-3, 8-11 which cause the worst case

conflict miss! As a result, we purpose an adjustable

address mapping scheme base on the access pattern.

Again, we can analyst only one block since the access

pattern is the same for every block. The access pattern for

the first block (v=h=0) is iNNh+j = 8i+j, 0 i N-1, 0 j

 N-1. Therefore, in order to avoid conflict miss,

iNNh%N2 =iN. As a result, Nh should set to 5. Note that

this does not affect the real frame size since the

conventional mapping is still used to bring the data from

off chip memory. This modification of mapping work as a

“virtual array padding”. And as a result of this, the

conflict miss is reduced. Figure 4 illustrates the efficiency

of the modified mapping scheme by apply it to the data

inquiries by the R2 FBME algorithm running on HDTV

data format. One can see from the plot that the conflict

miss of the current pixel data that occur in figure3 is now

resolved. Furthermore, the bandwidth required for

reference pixel data is also reduced.

6. CONCLUSION

In this paper, we shorten the ATLP of the data required by

the FBME algorithm by customized algorithm

CACHE SIZE VS OFF CHIP BW

7.0000

7.5000

8.0000

8.5000

9.0000

9.5000

10.0000

4 9 14

CACHE SIZE (LOG2)

L
O

G
1

0
(O

F
F

C
H

IP
 B

W
)

B
Y

T
E

/S
E

C CURR ORG

MAP

CURR MOD

MAP

REF ORG

MAP

REF MOD

Figure4. Bandwidth require by the L2 FBME algorithm

with and without modified mapping VS cache size.

transformation and modify the on chip cache mapping

using the virtual array padding. By shorten the ATLP, the

number of pixel read per block reduced substantially and

thus reduce the memory bandwidth. Taken into account of

the memory access characteristic of the FBME algorithm,

the memory bandwidth can be reduce further with respect

to the target cache size by the modify the address mapping

to make it more uniform which reduces the conflict miss

of the on chip direct map cache.

We would like to extend these techniques to use with

various data intensive multimedia algorithm and generate

a more automate and general framework of the algorithm

transformation to reduce the ATLP and cache address

mapping to reduce the conflict miss.

7. REFERENCES

[1] K. Beyls, Y. Yu, E. D’Hollander, “Characterization and

Optimizaation of Cache Behavior”,

http://winpar.elis.rug.ac.be/ppt.

[2] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L.

Nachtergaele, and A. Vandecappelle, “Custom Memory

Management Methodology”, Kluwer Academic Publishers,

1998.

[3] S. pratoomtong, S. Kittitornkun, and Y. H. Hu, “Data flow

scheduling and control for motion estimation array processor”,

ICEP 2004, Songkhla, Thailand.

[4] M. Miranda, F. Catthoor, M. Janssen, H. De Man, “ADOPT:

Efficient Hardware Address Generation in Distributed Memory

Architectures”, IEEE 1996.

[5] P. R. Panda, N. Dutt, A. Nicolau, “Memory issue in

embedded Systems-On-Chip”, Kluwer Academic Publishers,

1999.

[6] J. Tuan, T. Chang, C. Jen, “On the Data Reuse and Memory

Bandwidth Analysis for Full-Search Block-Matching VLSI

Architecture”, IEEE 2002.

II - 340

➡ ➠

