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ABSTRACT

In order to optimally implement real time, high 

throughput, data intensive multimedia applications, it is 

crucial to optimize the performance of the memory sub-

system to minimize excessive off-chip memory bandwidth 

subject to the constraint of available on-chip memory 

cache size. This can be accomplished by customizing 

algorithm transformation and designing customized cache 

address mapping algorithm for specific class of 

multimedia applications. In this paper, we propose an 

algorithm transformation and customized cache mapping 

to improve the data reusability and reduce address conflict 

which in turn, reduces the cache miss and memory I/O 

bandwidth for block-based full-search motion estimation 

algorithm. Simulation results using test video sequences 

demonstrate marked performance improvement.  

1. INTRODUCTION 

In modern SOC multimedia architecture, the memory sub-

system often occupies more than 50% of the chip area and 

consumes even larger portions of power. Multimedia 

algorithms such as video coding, 3D rendering often 

require real time computing and high data throughput rate. 

In order to optimally implement these data-intensive 

multimedia applications, it is crucial to optimize the 

performance of the memory sub-system to minimize 

excessive off-chip memory bandwidth subject to the 

constraint of available on-chip memory cache size. 

Many hardware or software techniques for enhancing the 

cache performance have been proposed. These include 

hardware techniques such as pre-fetching, value 

prediction, victim cache, etc.; and software techniques 

such as loop transformation and software pipelining. 

However, these existing hardware solutions are often 

devised for general purpose computing and do not take 

advantage of the deterministic data access patterns of 

multimedia algorithms. Existing software solutions, on the 

other hand, cannot address the needs to adjust the 

algorithm execution order so that the data memory access 

pattern best matches the characteristics of the underlying 

memory sub-system. Hence, a globally optimal solution to 

the data memory access problem in designing multimedia 

SoC must include both the development of cache-aware 

software and algorithm-specific hardware. 

For general purpose computing, cache memory addresses 

are often derived from logical linear addresses through 

direct mapping, or various set associative mapping 

schemes. Comparatively, direct map cache has faster 

access time, less complexity, lower power consumption, 

and is more suitable for SOC implementation where 

power and area are the main constraints. On the other 

hand, the direct mapping scheme tends to induce more 

conflict misses. More importantly, these general cache 

memory address mapping schemes can not take advantage 

of the predictable memory address access pattern, and 

hence often result in excessive cache misses and 

unnecessary off-chip memory I/O. With the availability of 

re-configurable blocks in modern system on chip (SOC) 

design, it is now possible to design on-line re-

configurable memory address calculation unit that can 

switch between different cache memory mapping schemes 

based on programs that are being executed [4]. In this 

paper, we will present a novel cache address mapping 

scheme that will reduce conflict cache misses for a full-

search block based motion estimation (FBME) algorithm.

From the software aspect, we argue that memory access 

must be taken into account as a design criterion when a 

multimedia algorithm is mapped onto a processor array 

architecture. In particular, the data access pattern should 

be included as part of the dependence relations to 

facilitate algorithm mapping. The impact of the 

transformed algorithm on memory subsystem 

performance should also be part of the criteria to evaluate 

the quality of a particular algorithm transformation 

methodology.  In this paper, we present the optimization 

of FBME algorithm base on the characteristic of the data 

access pattern which reduces the memory bandwidth 

substantially.  

2. CASE STUDY: FBME ALGORITHM 

FBME algorithm produces a motion vector (MV), which 

yields minimum mean-absolute distortion (MAD) 

between current block and the (2p+1)2 candidate blocks 

II - 3370-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



within the search area, for each of the N × N block of 

pixel in the current frame. Figure1 shows the high-level 

language representation of FBMA. It can be seen that the 

pixel in the current frame is used without overlapping and 

to complete ME for one block, each pixel in a current 

block is used repeatedly (2p+1)2 times. In otherworld, the 

life span of the pixels in each block is the time it is used to 

complete the ME for one block. Therefore, as long as the 

cache is big enough to store one current block, the 

temporal locality of the current block is fully exploited i.e. 

each pixel in the current frame can be reused for each 

iteration.  On the other hand, it is difficult to fully exploit 

the temporal locality of the pixel in search frame since 

pixel in each search block is overlapped when used. In 

order to complete ME of one block, (2p+1)2 N2 pixel need 

to be accessed but only (N+2p)2 pixel exist per search 

area. The redundancy accessed get more severe as the 

block size increase and thus, waste a lot of memory 

bandwidth. Consider when p = n/2, the ratio of the pixel 

accessed per block and pixel exist per block is (N+1)2 /4.

Figure1. Six-level nested Do-loop FBME algorithm.

3. ALGORITHM ANALYSIS AND 

TRANSFORMATION

Many multimedia applications contain nested do loop 

construct. Therefore the data memory access pattern can 

be evaluated statically by an equation during design time 

and represented as a function of loop parameters. An 

Access Temporal Locality Period (ATLP) can be derived 

form the access time equation. ATLP = 1 means the data 

accessed at time t is also access at time t+1. This will save 

the off-chip I/O memory bandwidth since the data is read 

from the cache only one time but it can be used for many 

iterations until a new data is requested. This in turn will 

also reduce the power consumption. Once the ATLP is 

known, the designer can optimized the algorithm in order 

to reduce the ATLP. From figure1, the access time 

equation t(i,j,m,n,h,v)  can be written as follows 

t(i,j,m,n,h,v) = j + iN + (n+p)N2 + (m+p)N2(2p+1)

 + hN2 (2p+1)2 + v N2 (2p+1)2Nh   

ATLP of the pixel in the current frame and reference 

frame can be found using the access time equation as 

follows 

ATLPCurr = t(i,j,m,n+1,h,v) - t(i,j,m,n,h,v) = N2

ATLP1Ref = t(i,j,m,n+1,h,v)  t(i,j,m,n,h,v) = N2

ATLP2Ref = t(i,j,m+1,n,h,v)  t(i,j,m,n,h,v) = N2 (2p+1)

ATLP3Ref = t(i,j,-p,-p,h+1,v)  t(i,j,p, p,h,v) = N2 (2p+1)

ATLP4Ref = t(i,j,-p,-p,h,v+1)  t(i,j, p,p,h,v)

= N2Nh   (2p+1) 2  2pN2

The current frame pixels have a fix ATLP and their 

temporal locality can be fully exploit when the cache size 

is big enough to store the entire current block. The 

reference frame pixels’ ATLP, on the other hand, can not 

be completely determined even the on-chip cache stores 

the entire reference frame block. This is because many 

reference frame pixels belong to overlapped reference 

frame blocks and will be used during different reference 

frame block ME computation. Given these observations, 

the goal is to transform the FBME algorithm to reduce 

ATLP of the reference frame pixels. Unfortunately, the 

details of the transformed algorithm have to be omitted 

due to space limitation. We called the reduction of 

ATLP1Ref and ATLP2Ref as R1 and R2 algorithm 

optimization respectively. We only consider the reduction 

of ATLP1Ref  and ATLP2Ref because ATLP3Ref is the same 

as ATLP2Ref and  ATLP4Ref is too large and depend on Nh

which makes it unpractical to optimized as it requires a lot 

more storage unit for partial MAD and yields more 

complex program.   

4. DATA AND RESULTS 

Table1 give the comparison of the number of reads per 

block and number of increasing partial MAD storage unit 

with respect to the number of partial MAD storage unit of 

the original FBME algorithm for each optimization level. 

Table2 shows the resolution of each video format and 

Table3 shows the bandwidth for each optimization level.    

Optimization 

level 

No 

optimization

R1

optimization

R2

optimization

#read/block (2p+1)2 N2 2N2 (2p+1) (2p+N)2

#increasing 

register
- N (2p+1)2-1

Table1. Amount of I/O VS optimized algorithms 

We calculate the worst case bandwidth for standard video 

format by assume that bus width = 1 byte. We also 

assume that all the data are available in memory. The 

bandwidth is equal to xNvNhf where x is the number of 

read per block shown in table 1 and f is frame rate. 
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Reducing the ATLP to 1 not only reduces the memory 

bandwidth required, it also reduces the address and data 

bus transition which in turn reduce the power 

consumption. 

Resolution 
 Format 

Pels lines Block size Frame/sec 

QCIF 176 144 8 29.97 

CIF 352 288 16 29.97 

NTSC 480 480 16 29.97 

HDTV 1920 1080 32 30 

HDTV 1280 720 32 60 

Table2. Resolution of different video format. 

Bandwidth (pixel/sec) 
Format 

No optimization R1 R2 

QCIF 6.15E+07 1.37E+07 3.04E+06 

CIF 8.78E+08 1.03E+08 1.22E+07 

NTSC 2.00E+09 2.35E+08 2.76E+07 

HDTV 6.77E+10 4.11E+09 2.49E+08 

HDTV 6.02E+10 3.65E+09 2.21E+08 

Table3. Off-chip bandwidth requires. 

In SOC, the main bandwidth bottleneck lies on the chip 

boundary. It is costly to bring the data from off chip. 

Therefore, we would like to minimize the off chip 

bandwidth by algorithm transformation as we did earlier. 

Figure2 shows the effect of the algorithm optimization to 

the off chip memory bandwidth with various on chip 

cache size. In order to show the effectiveness of the 

algorithm transformation, we again assume worst case 

scenario when the bus with is 1 byte. 

The minimum off chip bandwidth required to perform 

FBME on a QCIF data format shown by the horizontal 

dash line in figure2 is the rate to bring one frame into the 

on chip cache which is equal to 176 144 29.97 byte/s. 

One can see that for current frame access, when the cache 

size is greater or equal to ATLPCurr which is 258 or 8 in 

log2 base, the minimum bandwidth is achieved. For 

reference frame access, fortunately, the cache size does 

not have to be as big as ATLP4Ref to achieve the minimum 

off chip bandwidth. From figure2, cache size equal to 

2ATLP2Ref (cache size = ATLP2Ref is vertical line at 

12.08) can achieve the minimum off chip bandwidth. 

Figure3 show the relationship between the cache size and 

the off chip memory bandwidth require to perform FBME 

on a HDTV data format with the different optimization 

level of the algorithm transformation. One can see,  for 

current pixel access, that the minimum bandwidth (show 

by the horizontal line) can not be achieved even though 

the cache size is greater or equal to ATLPCurr which is 64 

or 6 in log2 base (show by the vertical line) for this case. 

This indicates that the conflict miss occurred. For 

reference pixel access, the R2 optimization out perform 

R1 optimization and no optimization. However, even 

though the cache size that require to achieve the minimum 

off chip bandwidth is much smaller than ATLP4Ref, it is 

much larger than the case for QCIF data format (  57 

ATLP2Ref).

CACHE SIZE VS OFFCHIP BW
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Figure2. Data format is QCIF(176 144) with block size = 

16 and frame rate = 29.97 frame/s 
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Figure3. Data format is HDTV(1920 1080) with block 

size = 8 and frame rate = 30 frame/s 

5. MEMORY SIZE AND MEMORY MAPPING 

SYNTHESIS

There are 3 cache misses type, cold miss occur when the 

data is reference for the first time, capacity miss occur 

when the cache is not big enough to hold all the data, and 

conflict miss occur when the data is map into the same 

cache location and interfere with each other. There is no 

capacity miss if the cache is big enough to hold the whole 

working set. Unfortunately, it is almost impossible to have 

such a big cache since for multimedia application; the 

working set is quite large. However, most of the 
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multimedia algorithm accesses a data in a regular stride 

pattern and thus the cache only need to be as big as ATLP 

to reduce the capacity misses. We call this cache size as a 

target cache size.  The conflict miss, however, does not 

depend on cache size. Even though the cache size is equal 

to the target cache size, the conflict miss can occur and 

mostly will be severe since it will repeat regularly as the 

access pattern. If the cache is at target cache size and there 

is a conflict miss occur, the problem lies in the mapping 

i.e. the mapping does not result in a uniform address 

distribution. Figure2 show an example for ideal case 

where there is no conflict miss when the cache size is at 

the target cache size. However, the conflict miss is 

sensitive to the block size and frame size and thus can 

occur when these parameters change. For a 2 dimension 

array data such as image, the data is mostly store in the off 

chip memory in a raster scan order and should remain that 

way for compatibility. However, we can modify the 

address mapping of the on chip cache. Let’s consider a 

simple example of performing FBME on an image with 

N=4, Nv=3, Nh=3. Since the access pattern is the same 

for all current pixels, we can consider only one block. 

Since ATLPCurr = N2, the target cache size in this example 

is 16. Follow the linear mapping convention, we can see 

that pixel at the memory location 0-3, 12-15, 24-27, 36-39 

are accessed and thus will map to the cache location 0-3, 

12-15, 8-11, 4-7. There is no interference and the address 

is uniformly distribute in the cache and thus, with cache 

size = ATLPCurr, the minimum cache miss is achieve 

which in turn save the off chip bandwidth. However, if 

the Nh is changed to 2, the address is mapped to the cache 

location 0-3, 8-11, 0-3, 8-11 which cause the worst case 

conflict miss! As a result, we purpose an adjustable 

address mapping scheme base on the access pattern. 

Again, we can analyst only one block since the access 

pattern is the same for every block. The access pattern for 

the first block (v=h=0) is iNNh+j = 8i+j, 0  i  N-1, 0  j 

 N-1. Therefore, in order to avoid conflict miss, 

iNNh%N2 =iN. As a result, Nh should set to 5. Note that 

this does not affect the real frame size since the 

conventional mapping is still used to bring the data from 

off chip memory. This modification of mapping work as a 

“virtual array padding”.  And as a result of this, the 

conflict miss is reduced. Figure 4 illustrates the efficiency 

of the modified mapping scheme by apply it to the data 

inquiries by the R2 FBME algorithm running on HDTV 

data format. One can see from the plot that the conflict 

miss of the current pixel data that occur in figure3 is now 

resolved. Furthermore, the bandwidth required for 

reference pixel data is also reduced.  

6. CONCLUSION 

In this paper, we shorten the ATLP of the data required by 

the FBME algorithm by customized algorithm  
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Figure4. Bandwidth require by the L2 FBME algorithm 

with and without modified mapping VS cache size.

transformation and modify the on chip cache mapping 

using the virtual array padding. By shorten the ATLP, the 

number of pixel read per block reduced substantially and 

thus reduce the memory bandwidth. Taken into account of 

the memory access characteristic of the FBME algorithm,  

the memory bandwidth can be reduce further with respect 

to the target cache size by the modify the address mapping 

to make it more uniform   which reduces the conflict miss 

of the on chip direct map cache.  

We would like to extend these techniques to use with 

various data intensive multimedia algorithm and generate 

a more automate and general framework of the algorithm 

transformation to reduce the ATLP and cache address 

mapping to reduce the conflict miss. 
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