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ABSTRACT

This paper presents a framework for jointly designing mo-
tion compensation, quantization and entropy coding in a hy-
brid video coding structure to minimize a rate distortion
cost. Given motion compensation, a soft decision-based
quantization algorithm is first designed to reduce the rate
distortion cost by adapting quantization outputs to the base-
line entropy coding method in the newest standard H.264.
Motion compensation is then optimized by searching for a
prediction to further reduce the rate distortion cost based on
given quantization outputs. By alternating these two steps,
an iterative method is then proposed. The proposed algo-
rithms have been implemented based on the reference en-
coder of H.264 with complete baseline decoder compatibil-
ity. Comparative studies show that the baseline-based it-
erative optimization method achieves coding performance
comparable or sometimes superior to that afforded by the
main profile encoder.

1. INTRODUCTION

Recently, rate-distortion (RD) theory has proved a great suc-
cess in video coding applications [2, 4]. As the newest video
coding standard, H.264/MPEG4 part10 achieves superior
RD performance over earlier standards such as MPEG2,
H.263, etc. by using RD optimization methods for motion
compensation and mode selection[2].

The H.264 standard has a hybrid coding structure con-
sisting of four functional elements, i.e., prediction, trans-
form, quantization and entropy coding. Ideally, an objective
function for RD optimization shall always be based on the
final reproduction distortion and the entire bit rate. How-
ever, the computational cost for minimizing the actual RD
cost is often too high for today’s silicon technology[4]. It
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involves in a search in a product space, which is often ex-
tremely large. Moreover, for a hybrid coding structure with
hard decision quantization the computational cost to evalu-
ate the actual RD cost is very high since it requires going
through the entire coding procedure.

There have been many studies on this RD optimality vs.
complexity issue[2, 4]. The most successful one that has
won its way into the H.264 codec is to ignore the effect of
residual coding on the prediction, which Wiegand et. al. [2]
proposed and implemented in the H.264 reference encoder.
Specifically, motion compensation is optimized based on
the prediction error only, i.e.,

arg min
v

Jp = ||x − p(v)|| + λ · R(v), (1)

where x is the pixel data, p is its prediction, v is the cor-
responding motion vector, and R is the coding rate. This
method works fairly well as reported in [2]. However, the
fact that it discards all the bit and distortion for the resid-
ual coding part suggests that there is still space for further
optimization.

In this paper, we propose a framework for jointly de-
signing motion compensation, quantization and entropy cod-
ing in the H.264 standard based on the actual RD cost. First
an optimal soft decision quantization algorithm is designed
to adapt quantization outputs corresponding to given mo-
tion prediction to the entropy coding method. Then, the
motion prediction is updated by searching for a new predic-
tion to further reduce the RD cost while fixing quantization
outputs. By alternating these two steps, both motion com-
pensation and residual coding are gradually improved in the
sense of reducing the actual RD cost. Moreover, as to be
presented later, the computational complexity is well man-
aged to be affordable for applications such as digital broad-
casting or multimedia distributions (optical disks, etc.).

H.264 supports two methods for coding the residual[5]:
the baseline context adaptive variable length coding(CAVLC)
and the main profile context adaptive binary arithmetic cod-
ing(CABAC). CABAC significantly outperforms CAVLC
on the coding efficiency over a range of acceptable video
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quality of PSNR from 30dB to 38dB[7]. The soft deci-
sion quantization algorithm in this paper is designed based
on the baseline CAVLC method, while CABAC is used for
comparison. The idea of trading off a little extra distortion
for a better coding efficiency has already been used in the
H.264 reference codec. However, it is in an ad hoc way, e.g.,
a whole block is discarded under certain conditions. The
soft decision quantization design here provides a systematic
method for adapting quantization outputs to entropy coding
for a better RD trade off.

The paper is organized as follows. A formal descrip-
tion of the RD optimization problem is presented in Section
2. An iterative solution is then proposed based on the soft
decision quantization design and motion compensation op-
timization algorithms. Experimental results are presented in
Section 4. Conclusions are drawn in Section 5.

2. FORMAL PROBLEM DEFINITION

The objective function for the RD optimization of the hy-
brid coding structure in H.264 is formed based on the final
reproduction distortion and entire coding rate as follows,

J(m,v,v) = D(x, x̂) + λ · (R(u) + R(m) + R(v)), (2)

where x is the original signal, x̂ = p(m,v)+T−1(Q−1(u))
is its reconstruction, and R(u), R(m), and R(v) are the
bit rate for coding the quantized coefficients u, prediction
modes m, and motion vectors v, respectively. Here p stands
for prediction, T(·) represents the DCT transform, and Q(·)
describes a scalar quantizer. Correspondingly, the optimiza-
tion problem is,

min
m,v,u

J(m,v,u) =||x − p(m,v) − T−1(Q−1(u))||2

+ λ · (R(u) + R(m) + R(v)). (3)

Optimization over m and v provides the optimal mode
and motion prediction. For the conventional hard-decision
quantizer, u is determined by p, i.e., u = Q(T(x − p)).
The consideration of the somehow hidden parameter u as
an optimization variable is the key point in the joint design.
It leads to the so-called soft decision quantization design,
which has displayed a significant gain in our work on opti-
mizing the JPEG standard[3].

3. ALGORITHM DESIGN

The problem of (3) leads to a joint design of motion com-
pensation, quantization and entropy coding in the hybrid
video coding structure. To the best of our knowledge, this
joint design has not been studied in the literature. To make
the problem tractable, we propose an iterative method to
optimize motion compensation and residual coding alter-
nately. In the following, an optimal soft decision quantizer
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Fig. 1. The graph for quantizing c. Each transition deter-
mines a (run, level) pair. A path represents a possible se-
quence as the quantization output u. Listed on the right are
the states, named after the trailing one rule and 7 codes for
coding levels. Transitions are built based on the run-length
code and the table switching rules in CAVLC.

is first designed based on the baseline CAVLC method using
a graph structure. Motion prediction is then updated based
on the actual RD cost. By alternating these two steps, we
get the iterative method, which solves the problem of (3)
based on the actual RD cost of (2).

3.1. Graph-based soft decision quantization

A simple example is helpful to develop an intuition for the
soft decision quantization. Consider a step size q = 5,
inputs c = (84, 0,−8, 17, 0,−11,−8, 1) and the CAVLC
method. Denote c̄ = c/q = (16.8, 0, −1.6, 3.4, 0, −2.2,
−1.6, 0.2). The quantization output given by the determin-
istic function round(·) is,

u=(17, 0, −2, 3, 0, −2, −2, 0), RCAVLC(u)=45bits.
On the other hand, a soft-decision based output can be,

u′=(17, 0, −2, 4, 0, −2, −1, 0), RCAVLC(u)=27bits.
Note that the quantization for a value of −1.6 may be either
−2 or −1, as (c̄3 =−1.6, u′

3 =−2) and (c̄7 =−1.6, u′
7 =

−1). The soft decision trades off a little more distortion for
a significant rate reduction for using CAVLC. Given m, v
and the residual input of x − p, the soft decision quantizer
works as

u = arg min
u

J, (4)

which is equivalent to,

u = arg min
u

||x− p− T−1(Q−1(u))||2 + λ ·R(u). (5)

We now address the computation issue for the distortion
term as it contains the inverse DCT transform. After some
calculations, we have

D = ||x − p − T−1(Q−1(u))||2
= ||(c − u · 2qper ) ⊗ a[qrem]/26||2, (6)
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where c and a can be easily computed before the quanti-
zation process. Thanks to the fact that the DCT transform
maintains the Euclidean distance, the distortion is now con-
veniently calculated in the DCT domain. The evaluation of
(6) only consumes 2 integer multiplications per coefficient.

The problem of (5) is solved based on a graph structure
as shown in Fig. 1. The graph is constructed to represent the
vector space of the quantization output u for input c, based
on coding features of run length code, variable length codes
selection, the trailing ones rule, etc(see [3] for details). The
optimal soft decision quantization design then becomes a
problem to search for a path in the graph for the minimal
RD cost. It is not hard to see that the above graph design
allows an additive computation of the RD cost in (5). The
Viterbi algorithm is then used to do the search.

The proposed soft decision quantization somehow shares
the same spirit with an entropy-constrained quantization de-
sign. In terms of using the Lagrangian method, the dif-
ference is that the soft decision quantization here is based
on a fixed slope scheme[1], where there is not an explicit
constraint on either the rate or the distortion. The fixed-
slope method is generally superior to a fixed-rate or fixed-
distortion method by its lower coding complexity[1].

3.2. Motion compensation optimization

For soft decision quantization, there is no deterministic re-
lationship between p and u any more. For a given u, it is
thus applicable to find a new prediction p to minimize the
actual RD cost, i.e., to update the motion vector v by,

v = arg min
v

||x−T−1(Q−1(u))−p(m,v)||2 +λ ·R(v),

because m and u are now considered fixed. Define x′ =
x − T−1(Q−1(u)). We have

v = arg min
v

||x′ − p(v)||2 + λ · R(v). (7)

The beauty in (7) is that it can be solved using the same
algorithm that has been developed in H.264 reference en-
coder for minimizing (1). For a given m and u, x′ can be
easily computed. The optimization is then conducted as to
search for a motion vector to match a ‘new’ block x′. There
is hardly any increase of computation, while the optimality
over the actual RD cost has been achieved.

3.3. The joint optimization algorithm

Based on the above discussion of soft-decision quantization
and motion vector updating, we now summarize our method
to solve the joint optimization problem of (3).

1. Given mode m, initialize v by minimizing (1).

2. Soft-decision quantization. For given mode m and
motion vector v, compute u by solving (5).
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Fig. 2. RD performance for the video clip “News.qcif”.

3. Motion compensation optimization. For given m and
u, update v by solving (7).

4. Choose the optimal m by

m = arg min
m

||x − T−1(Q−1(u)) − p||2

+ λ · (RVLC(v) + RVLC(m) + RCAVLC(u)).

5. Repeat step 2, 3, and 4 until the decrease of J reaches
a given threshold.

The proposed algorithm is guaranteed to converge because
the actual RD cost is decreasing at each iteration step. From
the fixed-slope optimization point of view, we shall fix the
Lagrangian multiplier λ and optimize over the quantization
step size to further reduce the RD cost. However, users
would prefer using the quantization step size qp to control
the codec. For simplicity we give up the minor gain and
initialize λ from qp by using an equation of λ = 0.85 ·
2(qp−12)/3, which was discovered in empirical studies of
[2, 6]. Experiment results show that this formula works well
for our optimization algorithm.

The computational complexity of the proposed iterative
algorithm comes from three parts. Motion compensation
and mode selection hardly cause any increase compared to
the method by Wiegand et. al. [2]. The main extra com-
putational cost results from the soft-decision quantization,
which is basically a path search in a graph shown in Fig.
1 using the Viterbi algorithm. It turns out that the compu-
tational cost for one iteration is just slightly more than the
coding process in the reference code.

4. EXPERIMENTAL RESULTS

Simulations have been conducted over a range of typical
video sequences. The optimization algorithm is implemented
based on the H.264 reference software Jm82. Only the first
frame is intra coded (I-frame), while all the subsequent frames
use temporal prediction (P-frame). B frame is not used since

II - 327

➡ ➡



30 35 40 45 50 55 60

33.5

34

34.5

35

35.5

36
Video clip "Foreman.qcif"

Bit rate (kbit/s)

PS
N

R

Baseline, defaulted RD opt.
Main profile, defaulted RD opt
Baseline, Joint opt

Fig. 3. RD performance for the video clip “Foreman.qcif”.

we target baseline decoder compatibility. The range for full-
pixel motion compensation is ±32. The iteration is stopped
when the RD cost decrease is less than 1%. By using the so-
lution from (1) as initialization, it is observed to stop after 2
loops in most cases.

Figures 2, 3 and 4 show the RD curves for the luminance
component of various video clips. The dashed line accords
to a baseline codec using CAVLC; the dotted line stands
for a codec using main profile CABAC. The defaulted RD
optimization in the codec is enabled in both cases. The
solid line shows the result of the proposed joint optimiza-
tion method based on the baseline CAVLC. Experimental
results show that the joint optimization method successfully
improves the coding efficiency of the baseline codec to the
level of the codec using main profile method. Theoretically,
the advantage of the main profile CABAC over the baseline
CAVLC comes from its adaptability to the symbol statistics
and its ability to use a noninteger code length. The funda-
mental 1bit/symbol limit on the variable length code leads
to a poor coding performance for CAVLC when the sym-
bol probability is large, e.g., greater than 0.5. It is shown
that this fundamental deficit of CAVLC to CABAC has been
well compensated when we tune up the whole system with
the joint optimization.

5. CONCLUSIONS

In this paper, we proposed a framework for joint optimiza-
tion of motion compensation, quantization and entropy cod-
ing in a hybrid video coding structure. The proposed method
has been applied to improve the coding efficiency of the
baseline codec for the H.264 standard.

Experimental results show that the baseline-based opti-
mization method achieves very close coding performance at
average with that of an encoder using main profile CABAC.
Because optimization is conducted only to the encoding pro-
cess, the decoder enjoys both the computational efficiency
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Fig. 4. RD performance for the video clip “Carphone.qcif”.

of the baseline CAVLC and the coding efficiency, resulting
in a faster and cheaper access to the video content, yet with
similar quality. It shows a great potential to open the market
for baseline products.

In addition, the joint optimization framework is by no
means restricted to the baseline entropy coding method. In-
formation theoretical analysis shows that a similar gain can
be expected by designing soft decision quantization based
on the main profile CABAC. We are currently working on
this. Results will be delivered soon.
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