
LOW BIT RATE VIDEO CODING USING DCT-BASED FAST
DECIMATION/INTERPOLATION AND EMBEDDED ZEROTREE CODING

H. A. Ilgin and L. F. Chaparro

Department of Electrical and Computer Engineering
University of Pittsburgh

Pittsburgh, PA 15261, USA

ABSTRACT

In this paper, we present a low bit rate video coding procedure in
the Discrete Cosine Transform (DCT) domain that is based in fast
decimation and interpolation and embedded zerotree coding algo-
rithms. The theory for the decimation/interpolation in the DCT
domain is given, and we show how to obtain fast algorithms. Mo-
tivated by the compositing of several video sources in multi-point
video conferencing, we come up with a new method for single
video streams that uses the proposed DCT-decimation in the en-
coder and the corresponding interpolation in the decoder. The dec-
imated video frames are encoded using an embedded zerotree and
an adaptive arithmetic coder to improve the quality of the decoded
video and at an exact bit rate. The decimation and interpolation
can be done with integer or rational factors, allowing flexibility in
choosing the bit rate. Our codec performance is illustrated using
different decimation factors, and showing that this codec is partic-
ularly efficient for low bit rates.

1. INTRODUCTION

Recently, there has been a growing interest in developing fast algo-
rithms for processing video streams, using H.26x or MPEG com-
pression standards, directly in the DCT domain. It has been shown
[3], [4] that the DCT –or compressed domain– is more efficient
than the space domain for image resizing. In this paper, we focus
on the development of a general approach for DCT decimation and
interpolation for integer [4] as well as rational factors and its appli-
cation, together with embedded zerotree coder [1], [2], to improve
the compression of a video stream. This procedure is shown to be
very efficient for low bit rate video.

The encoding methodology is shown in Fig. 1. Video frames
are encoded in the DCT domain, and after motion estimation and
compensation are realized, the DCT error frames are decimated.
The decimation and interpolation in the DCT domain basically
consists in converting, for an integer N , an N × N array of 8 × 8
DCT blocks (typical block size in H.26x and MPEG) into one of
size 8N×8N . For efficiency it is possible to use only q×q (q < 8)
low frequency coefficients of each block. To insure no aliasing, the
8N × 8N block is then masked to obtain the low-frequency co-
efficients and thus the decimated DCT block (See Fig. 2). This
transformation is slightly more complicated in the case of a ratio-
nal factor N .

The transformation of an array of DCT blocks into one DCT
block was recently introduced [5], and we show a simpler way to
obtain it in a matrix form. It is shown to be orthogonal and to
have certain properties, derived from the DCT matrices, that per-

mits the development of fast decimation/interpolation algorithms.
Using the DCT-decimator in the encoder we are able to encode
several frames of a video stream in the size corresponding to one
frame. To exploit the dependencies of the DCT coefficients by the
zerotree coder, they are arranged into a hierarchical subband struc-
ture similar to that in the wavelet transform. This frame is then
coded using a DCT-based embedded zerotree (DCT-EZT) algo-
rithm and using an adaptive arithmetic coder. In the decoder, we
apply the DCT-interpolation to recover the original DCT frames
using the zerotree decoder.

Video +

Frame

Memory

Motion Estimation

& Compensation

Motion Vectors

DCT
DCT

Decimation

Arrangement of

DCT Blocks into DCT EZT

Rearrangement of

DCTs into Block

Structure

DCT
Interpolation

Inverse

DCT

Arithmetic

Adaptive

Encoder

Inverse

DCT EZT

Hiearchical Structure

+ +

Frame

Fig. 1. Proposed encoder

Decimated

Transform

8

8

q

q

q

q

q

q q

q 8

8

q

q q

q

16
Masking

X 11 X 12

X 21 X 22

X
DCT Block

16 X d

q
8

1688

8

DCT Block

Fig. 2. Proposed DCT decimation

In the next two sections we explain DCT block transforma-
tion and a way to make the transformation faster. We also give the
details of improved decimation and interpolation in the DCT do-
main. Simulations and conclusions are given in Section 4 and 5,
respectively.

2. DCT BLOCK-TRANSFORMATION

Suppose we have an array of N ×N DCT blocks, N integer, each
block of size 8 × 8, and we wish to transform it into one DCT
block of dimension 8N × 8N by means of an orthonormal matrix

II - 3170-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

transformation. This corresponds to finding the inverse DCT of
each of the 8 × 8 blocks, arranging them into one space array of
dimension 8N × 8N , and finding its 8N DCT. A more efficient
way has been proposed in [5], and we will show here a simpler
matrix approach. The problem is to find a matrix T 8N , that is
orthonormal i.e., (T 8N)tT 8N = I , and such that

X8N = T 8N

�
� X8

11 · · · X8
1N

· · ·
X8

N1 · · · X8
NN

�
� (T 8N)t,

where {X8
ij}i,j=1,··· ,N are 8 × 8 DCT blocks and X8N is an

8N two-dimensional DCT block. Since the transformation matrix
T 8N is unique for any set of {X8

ij}i,j=1,··· ,N and X8N , consider
the following simple case. Let X8

ii = I8, 8 × 8 identity matrix,
and X8

ij = 0, i �= j. The DCT 1 of each Xii is I8 and the expected
X8N is I8N , 8N × 8N identity matrix, therefore

I8N = S8N

�
� (S8)tS8 · · · 0

· · · (S8)tS8 · · ·
0 · · · (S8)tS8

�
� (S8N)t,

where S8 is 8×8 DCT matrix, and by its orthonormality (S8)tS8 =
I8. Thus, the transformation matrix is

T 8N = S8N

�
� (S8)t · · · 0

· · · (S8)t · · ·
0 · · · (S8)t

�
� , (1)

and it is orthonormal as I8N = T 8N (T 8N)t.
To obtain the forward transformation, let

S8N =
�
S8N

1 S8N
2 · · · S8N

N

�
, (2)

so that the transformation matrix becomes

T 8N =
�
T 8N

1 T 8N
2 · · · T 8N

N

�
, (3)

and the sub-blocks {T 8N
i = S8N

i (S8)t} are of dimension 8N×8.
The representation of X8N in terms of the {X8

ij}, or the forward
transformation, is then

X8N =

N�
i=1

N�
j=1

T 8N
i X8

ij(T
8N
j)t. (4)

The inverse transformation of each of the 8 × 8 DCT blocks is
given by

X8
ij = (T 8N

i)tX8NT 8N
j , (5)

using the orthonormality of the transformations.

1The M × M DCT can be expressed in a matrix form by letting
x = {x(n, m)}M−1

n,m=0, the DCT matrix SM = {s(k, n)}M−1
k,n=0 =

{0.5c(k) cos((2n + 1)kπ/(2M))} as X = {X(k, l)}M−1
k,�=0 =

SMx(SM)t. The inverse DCT is x = (SM)tXSM .

2.1. Fast Transformation

For simplicity consider the integer case N = 2. The results can
be extended to other integer factors. We show that although in this
case {T 16

i }i=1,2 are sparse (half of their entries are zeros and ones)
it is possible to obtain sparser matrices for the forward transforma-
tion. In fact, as first indicated in [4], the odd rows of {S16

i }i=1,2

coincide with the odd rows of S8, and due to the orthonormality
of S8, the matrices {T 16

i = S16
i (S8)t}i=1,2 are such that

J0S
16
1 =

	
S8

Y

where Y is a “don’t-care” array, and J0 is a permutation matrix
that separates the odd and the even rows. Thus, the sub-block T 16

1

as defined above for N = 2, is given by

T 16
1 = J t

0

	
I8

Y (S8)t

showing that half of its entries are zero or one. Similarly for T 16
2 .

Thus the transformation matrices are sparse. Furthermore, it can
be shown the following symmetry exists between T 16

1 and T 16
2 :

T 16
2 (i, j) = (−1)i+jT 16

1 (i, j) (6)

for i = 1, · · · , 16 and j = 1, · · · , 8. In fact, by definition

T 16
2 = S16

	
0
I8

(S8)t

= S16J16
i (S16)tS16

	
I8

0

(S8)tS8(J8

i)t(S8)t

= J16
m T 16

1 J8
m

where JM
i , M = 8, 16, is a permutation matrix,

JM
i =

�
��

0 0 · · · 0 1
0 0 · · · 1 0
0 1 · · · 0 0
1 0 · · · 0 0

�
�� ,

and

JM
m =

�
���

1 0 · · · 0 0
0 −1 · · · 0 0
0 0 · · · 0 0
0 0 · · · 0 (−1)M+1

�
���

is the DCT of JM
i as can be easily verified. Due to this symmetry,

instead of T 16
1 and T 16

2 we consider their sum and difference,

C16
1 = 0.5 [T 16

1 + T 16
2], C16

2 = 0.5 [T 16
1 − T 16

2], (7)

which according to the above symmetry gives that C16
1 (i, j) =

T 16
1 (i, j) when (i + j) are even and zero otherwise. Likewise,

C16
2 (i, j) = T 16

1 (i, j) when (i + j) is odd and zero otherwise.
Thus,the sparseness and symmetry of the {T 16

i } matrices makes
the {C16

i } matrices very sparse, allowing a very efficient forward
transformation. Replacing the T 16

i in terms of the C16
i matrices in

the direct transformation we have

X16 = [X + Y](C16
1)t + [X − Y](C16

2)t

X = C16
1 (X8

11 + X8
21) + C16

2 (X8
11 − X8

21)

Y = C16
1 (X8

12 + X8
22) + C16

2 (X8
12 − X8

22) (8)

II - 318

➡ ➡

3. DECIMATION AND INTERPOLATION IN THE DCT
DOMAIN

Decimation in the space domain consists of low-pass filtering (to
avoid aliasing) followed by downsampling, and the bandwidth of
the filter depends on the decimation rate. In the DCT domain,
masking instead of filtering permits us to obtain the decimated
DCT block. Applying the direct transformation we obtain a 16 ×
16 DCT block from the given four 8 × 8 DCT blocks. Masking
the X16 matrix to extract the low-frequency coefficients we obtain
the decimated DCT array:

Xd = [I8 0]X16[I8 0]t =

2�
i=1

2�
j=1

F 16
i X8

ij(F
16
j)t (9)

where F 16
i = [I8 0]T 16

i . Again the above equation can be effi-
ciently implemented using the sum and difference representations
of T 16

i defining

D16
1 = [I8 0]C16

1 , D16
2 = [I8 0]C16

2 (10)

The quality of the decimation can be quantified by interpolat-
ing the decimated frame to obtain a smooth version of the original
frame, and finding the error between this and the original frame. To
obtain the smooth-out blocks,{X̃8

ij}, consider the forward trans-
formation of the 16 × 16 block

�
Xd 0
0 0

�
=
�
i,j

T 16
i X̃8

ij(T
16
j)t

Applying the inverse transformation obtained before we have in-
terpolated blocks:

X̃8
ij = (T 16

i)t

�
Xd 0
0 0

�
T 16

j , i, j = 1, 2 (11)

where T 16
j , as explained before, are 16 × 8 matrices.

3.1. Improved Decimation

Typically, the high frequency coefficients in a DCT block are zero,
and even when they are set to zero its inverse DCT values are not
very different from the original ones. Consider then that the DCT
blocks to be decimated have q × q (1 ≤ q ≤ 8) low-frequency
components and the rest are zero

X8
ij =

�
Xq

ij 0
0 0

�
=

�
Iq

0

�
Xq

ij

�
Iq 0

�

Replacing these blocks in (9) gives

Xq
d =

�
i,j

G16
i Xq

ij(G
16
j)t (12)

where G16
i = F 16

i [Iq 0]t, i = 1, 2, 1 ≤ q ≤ 8. Again, these 8×q
matrices are sparse, but as before, sparser matrices can be used:

E16
1 = D16

1 [Iq 0]t, E16
2 = D16

2 [Iq 0]t

These matrices are sparser than the C and the D matrices (espe-
cially for small values of q). For example, for N = 2 and q = 4,
69% of the entries of each E matrix are zeros. For this case the

Table 1. PSNR (dB) results of the proposed method and Dugad’s
(N = 2)

Sample Frame Dugad et. al q = 4 q = 8
Miss America 38.97 38.94 39.43
Salesman 30.51 30.46 30.96
Foreman 32.73 32.68 33.18
Hall 28.52 28.47 29.04
News 29.73 29.66 30.37

number of computations to decimate an image is 1.25 multiplica-
tions/pixel and 1.25 additions/pixel which is the same as Dudag’s
in [4]. As expected, the larger q is (i.e., 4 ≤ q ≤ 8), the better the
interpolation (see Table 1), but the more complex the implementa-
tion. Decimation by an integer N > 2 proceeds in a very similar
way to decimation by 2. In each case, we transform an array of
N × N DCTs of size 8 × 8 into one array of size 8N × 8N , and
then mask it to obtain the decimated 8 × 8 DCT. Just as before, it
is also possible when N > 2 to represent each 8 × 8 block with a
q × q coefficients (q < 8) and the rest zero for faster implementa-
tion. The computational complexity depends on the value of q, and
the error between the original block and the interpolated block, as
measured by PSNR, is better for larger values of q. It is also possi-
ble to decimate by a rational number, e.g., N = 2/3 or N = 3/4.
In this case the algorithm requires additional computations. When
N = 2/3, we first need to transform 3 × 3 array of 8 × 8 DCT
blocks into one of size 24 × 24. The masking to get the 2/3 gives
us a DCT block of dimension 16 × 16 which needs then to be
converted into four 8 × 8 blocks. These additional computation
increases the complexity of the decimation for rational factors.

4. SIMULATIONS

We illustrate our decimation/interpolation algorithm with a Sales-
man CIF (Common Intermediate Format) video sequence. In the
figures, regular encoding stands for H.263 video coding. We re-
place regular quantization with embedded zerotree coding in H.263,
consequently adaptive arithmetic coding is used. This way we use
the same encoding methodology to encode DCT coefficients and
data symbols with the proposed system. We also use full pixel
motion estimation and compensation for simplicity, although half
pixel motion estimation and compensation can be used to improve
quality.

Considering only intra-frames, the effect of the decimation
factor N in the reconstructed image quality for given bit rates is
shown in Fig. 3. We also use only q×q, q < 8 part of DCT blocks
for each decimation case as stated particularly in the same figure.
The effects of each decimation factor differ with the number of bits
used to encode each frame. For lower bit rates, we obtain better
PSNRs than H.263 for reconstructed intraframes as shown in Fig.
3. Notice that for higher decimation factors (N = 4) the PSNR is
initially better than for lower factors, but as the bit rate increases
the opposite is true. Also from Fig. 3 the PSNR saturations occur
after a particular bit rate. Thus the maximum required bit rate for
a particular decimation factor can be taken as the bit rate corre-
sponding to where the PSNR graphs coincide.

Considering both intra- and inter-frames, average PSNR com-
parisons of the proposed method with decimation factor N = 2
and regular encoding are shown in Fig. 4. As seen from this fig-
ure, average PSNRs of a video sequence strongly depends on the

II - 319

➡ ➡

0.5 1 1.5 2 2.5

x 10
4

19

20

21

22

23

24

25

26

27

28

29

Rate Distortion(PSNR) Salesman Intraframe

Bit Rate (Bits/Frame)

P
S

N
R

 (
dB

)

Regular Encoding
Proposed Encoding N=2,q=4
Proposed Encoding N=3,q=3
Proposed Encoding N=4,q=2
Proposed Encoding N=2/3,q=6

Fig. 3. Rate-distortion performances of the proposed encoding vs.
regular encoding for Salesman intraframe

bit rate of the intra-frame. If an intra-frame is encoded with a low
bit rate, which is our aim in this work, the proposed method gives
better results then regular encoding. In Fig. 4, from top to bot-
tom, intra-frames are encoded with 10000, 15000, and 20000 bits.
We encode 30 frames/second and each GOP (Group of Picture) in-
cludes an intra-frame and 49 inter-frames. On the graphs on the
top and in the middle, our method gives better PSNRs from 7.47
kilobits/second up to 45 kilobits/second. However, efficiency of
the proposed method at higher bit rates decreases as displayed on
the graphs in Fig. 4. Beside objective results, the reconstructed
frames are also subjectively better than the ones from regular cod-
ing at lower bit rates.

5. CONCLUSION

In this paper we introduce fast decimation and interpolation for
low bit rate video coding. Depending on the desired bit rate any
integer or rational decimation factor can be chosen to encode video
sequences. In the receiver side corresponding interpolation is real-
ized. Reconstructed video quality is improved regarding to regular
encoding. However as the bit rate increases, efficiency of the dec-
imation and interpolation of the proposed coding decreases. Our
method is well suitable for low bit rate video applications such as
videoconferencing. The decimation/interpolation method we pro-
pose is not complex and is flexible, so the delay introduced by the
decimation is negotiable.

6. REFERENCES

[1] Shapiro, J. M., “Embedded Image Coding Using Zerotrees
of Wavelet Coefficients,” IEEE Trans. Sig. Proc., pp. 3445-
3462, Dec. 1993.

[2] A. Said, W. A. Pearlman, “A new, fast, and efficient image
codec based on set partitioning in hierarchical trees,” IEEE
Trans. Circ. and Sys. for Vid. Tech., pp. 243-250, June 1996.

[3] Y. Noguchi, D. G. Messerschmitt, and S.-F. Chang, “MPEG
Video Compositing in the Compressed Domain,” Proc. IEEE
Intl. Symp. Circ. and Sys., Vol. 2, pp. 596-599, May 1996.

[4] Dugad, R., Ahuja, N., “A Fast Scheme for Image Size
Change in the Compressed Domain,” IEEE Trans. Circ. and
Sys. for Vid. Tech., pp.461-474, Apr. 2001.

[5] Jian, J., Feng, G., “The Spatial Relationship of DCT Coef-
ficients Between a Block and its Sub-blocks,” IEEE Trans.
Signal Proc., pp. 1160-1169, May 2002.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

x 10
4

27.2

27.4

27.6

27.8

28

28.2

28.4

28.6

28.8
Salesman Sequence Rate Distortion Performance (intraframe:10000 bits)

bits per second

P
S

N
R

 (
dB

)

Regular Encoding
Proposed Encoding (N=2)

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

x 10
4

27.6

27.8

28

28.2

28.4

28.6

28.8

29
Salesman Sequence Rate Distortion Performance (intraframe:15000 bits)

bits per second

P
S

N
R

 (
dB

)

Regular Encoding
Proposed Encoding (N=2)

2 3 4 5 6 7

x 10
4

28.2

28.4

28.6

28.8

29

29.2

Salesman Sequence Rate Distortion Performance (intraframe:20000 bits)

bits per second

P
S

N
R

 (
dB

)

Regular Encoding
Proposed Encoding (N=2)

Fig. 4. Rate-distortion performances of the proposed encoding vs.
regular encoding for video sequences

II - 320

➡ ➠

