
H.264-BASED LOSSLESS VIDEO CODING USING ADAPTIVE TRANSFORMS

Seishi Takamura and Yoshiyuki Yashima

NTT Cyber Space Laboratories, NTT Corporation,
Y517A, 1-1 Hikari-no-oka, Yokosuka, Kanagawa, 239-0847 Japan,

e-mail: {takamura.seishi, yashima.yoshiyuki}@lab.ntt.co.jp

ABSTRACT

In this paper we propose a reversible video coding method
that combines adaptive transform with H.264 tools. We ex-
tensively compare its lossless coding performance against
three different reversible transforms and Motion JPEG 2000.
Experimental results show that for I picture coding, the pro-
posed method performed slightly worse (2.0% lower com-
pression ratio on average) than Motion JPEG 2000 while
outperforming the new H.264 FRExt standard (9.4 to 14%).
For B and P pictures, our method offered the best perfor-
mance with 0.3 to 6.2% gain over FRExt. Our method re-
quires minimal modification to H.264 software and provides
better performance than other existing methods.

1. INTRODUCTION

Lossless video coding is important in many application ar-
eas such as source distribution, digital cinema, medical imag-
ing. Although there are lossless still image coding standards
such as JPEG-LS and (Motion)JPEG 2000, they do not per-
form motion compensation and their performance is limited.

Among the lossy video coding standards, H.264[1] of-
fers quite good coding efficiency. This is partly due to its
powerful spatiotemporal prediction techniques such as flex-
ible block size motion compensation, multiple reference frames
and adaptive intra prediction.

H.264’s recent Fidelity Range Extension (FRExt) trans-
forms the residual in a verbatim manner to enable lossless
coding. In terms of the transform approach, there are sev-
eral reversible schemes in the literature. This paper first
grafts these transforms onto H.264 and evaluated the result-
ing performance. We propose another reversible transform
and implement it for lossless video coding. We also propose
an adaptive version. We compare its performance to those
of other reversible transforms, as well as with Motion JPEG
2000.

2. REVERSIBLE TRANSFORM METHODS

In this section we deal with conventional reversible 1x4-
dimensional transforms. Given a 4x4 image data, the 1x4

transform is applied four times for each horizontal and ver-
tical direction to obtain 4x4 coefficients.

Quite a few reversible transform methods are proposed
in the literature. In this paper we implement and test some
of these proposals as well as our new method.

2.1. Integer transform of H.264 without quantization

H.264 uses a relatively simple DCT-like integer transform
expressed by the following matrix D.

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

With the plain H.264 decoder this is not reversible since it
has a dequantization process and an inverse transformation
process with right bit shifts. However, the above transofrm
is mathematically reversible if the quantization process is
not carried out.

Note that its determinant is much larger than one (det(D) =
40). This means that the output coefficient vector is 40 times
larger than the input signal vector, i.e., the transformed do-
main is 40 times coarser than the pixel value domain. This
magnification is for only one row or one column of the
block, and in 4x4 transform, it is multiplied eight times
(four rows and four columns). Therefore the output 4x4
coefficient block is 408 � 6.6 × 1012 times coarser than the
original pixel value block.

2.2. Method 1: Verbatim signal (H.264 FRExt)

H.264 FRExt adopts the technique of skipping the appli-
cation of both transform and quantization processes to the
residual signals and directly passing them to the entropy
coder. As H.264’s intra-/inter-predictions are all integer-
based, the decoded image is identical to the original. In this
case, the transform matrix equals the identity matrix, and
has the determinant of one. However, decorrelation among
the residual signals is never carried out. This may result in
inefficiency given the existence of correlated residuals.

II - 3010-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

1 1

1 -1

2 1

1 -2

1 1

1 -1

1 1

1 -1

A

AA

B

x0

x1

x2

x3

X0

X1

X2

X3

Fig. 1. Block diagram of integer transform. For H.264
transform, nodes A© and B© do nothing. For method 2 trans-
form, they down-scale and round to integers.

2.3. Method 2: Piecewise scaled transform

The transform of H.264 is described by the block diagram in
Fig. 1. The transform is decomposed into four transforms,
expressed by sub blocks, as shown in the figure. For H.264
transform, nodes A© and B© make no operation. In each sub-
block, output signals are redundant. For example, instead of
X0 = x0 + x1 and X1 = x0 − x1,

X0 = x0 + x1, X1 = R((x0 − x1)/2),
x′0 = X1 + �X0/2�, x′1 = X0 − x′0,

where R(x) = �x + 0.5� retrieves the original signals, i.e.,

x0 = x′0 and x1 = x′1. Likewise, X0 = 2x0 + x1 and X1 =

x0 − 2x1 have redundancy because
X0 = 2x0 + x1, X1 = R((x0 − 2x1)/5),
x′0 = X1 + (2X0 − offset[X0 mod 5])/5, x′1 = X0 − 2x′0,

where “offset” is an array with five elements, {0, 2,−1, 1,−2},
that retrieves the original values. Mapping of (x0, ..., x3)
onto (X0, ..., X3) is as follows:

X0 = x0 + x1 + x2 + x3

X1 = 2R((x0 − x3)/2) + R((x1 − x2)/2)
X2 = R((x0 − x1 − x2 + x3)/2)
X3 = R((R((x0 − x3)/2) − 2R((x1 − x2)/2))/5)

This is equivalent to down-scaling by 1/2 and 1/5 and round-
ing to integers at nodes A© and B© in Fig. 1, respectively. The
transform matrix approximately equals the following with
determinant of one.

D2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
1 1/2 −1/2 −1

1/2 −1/2 −1/2 1/2
1/10 −1/5 1/5 −1/10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

2.4. Method 3: Reversible DCT

Komatsu et al. proposed a type of reversible DCT[2]. Its
1x4 dimensional case is as follows:

X0 = R((x0 + x1 + x2 + x3)/4)
X1 = x0 − x3 + R((x1 − x2)/C)
X2 = R((x0 − x1 − x2 + x3)/2)
X3 = R((x0 − x3)/C) − x1 + x2,

where C is an arbitrary positive real number. This gives this
transform more flexibility than other integer-based trans-
forms. Although it uses real numbers, the transform is re-

versible. When C = 2, the transform parallels H.264’s
transform. In the literature, disregarding the complexity, it
is suggested to use C = cos(π/8) / cos(3π/8) = 1+

√
2 to

make the transform equivalent to mathematical DCT. In the
experiment, we tested C = 1+

√
2, 3 and 3.5. The transform

matrix approximately equals:

D3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/4 1/4 1/4 1/4
1 1/C −1/C −1

1/2 −1/2 −1/2 1/2
1/C −1 1 −1/C

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3)

As det(D3) = 1+1/C2 > 1, the transformed space is always
slightly more expanded than the input space.

3. PROPOSED METHOD

3.1. Fixed version

We apply the following autoregressive transform:
X0 = x0

X1 = x1 − R(αx0)
X2 = x2 − R(αx1)
X3 = x3 − R(αx2)

where α is a constant. This is identical to Method 1 when
α = 0. As block boundaries usually have signal disconti-
nuity, we do not use inter-block prediction. The transform
matrix approximately equals:

D4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
−α 1 0 0
0 −α 1 0
0 0 −α 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4)

As det(D4) = 1, the signal is not expanded at all after the
transform. The calculation cost for this transform is as small
as that of method 1, and much smaller those of than methods
2, 3, and “no quantization”.

We apply this transform in both horizontal and verti-
cal directions. The horizontal and vertical values of α do
not need to be the same. This is not orthogonal, however it
works better than other orthogonal transforms such as meth-
ods 1 to 3 as will be shown in the experimental results.

We tuned the parameter α to maximize the average com-
pression ratio. We found α = 0.7 for I and α = 0.4 for P and
B work well, and used them in the experiments.

3.2. Adaptive version

The optimal value of α in Eq. 4 in terms of energy com-
paction is given as the correlation coefficient value among
residual signals x of the current block. This exact value can-
not be known since the signal has yet to be decoded. Send-
ing α as side information for each 4x4 block may greatly
increase the bit-rate. However, we can estimate its appro-
priate value from adjacent correlation values.

II - 302

➡ ➡

Table 1. Lossless compression ratios for I pictures (*QCIF, **CIF, MJ2k=Motion JPEG 2000)
no quan- method 1 method 2 method 3 proposed method I-only methods

sequence tization (FRExt) (piecewise) C=1+
√

2 C = 3 C = 3.5 fixed adaptive Lee[3] MJ2k
container* 1.122 1.904 1.902 1.999 2.011 2.015 2.096 2.120 2.168 2.111

silent* 1.045 1.691 1.719 1.840 1.846 1.846 1.955 1.948 1.946 1.981
news* 1.127 1.846 1.899 1.998 2.008 2.008 2.120 2.124 2.183 2.126
stefan* 0.891 1.444 1.440 1.523 1.529 1.531 1.605 1.614 1.613 1.675
coast** 1.043 1.738 1.723 1.847 1.852 1.852 1.947 1.963 1.953 2.061

foreman** 1.182 2.059 2.032 2.121 2.132 2.134 2.250 2.272 2.311 2.265
silent** 1.090 1.841 1.828 1.936 1.946 1.948 2.042 2.050 2.059 2.088
paris** 1.007 1.627 1.659 1.734 1.746 1.750 1.825 1.842 1.894 1.877

mobile** 0.838 1.327 1.324 1.384 1.387 1.387 1.458 1.463 1.487 1.571
Average 1.038 1.720 1.725 1.820 1.829 1.830 1.922 1.933 1.957 1.973

Our strategy is, if the horizontal correlation seems stronger
than the vertical correlation then the left adjacent correla-
tion value is weighted more than other locations to yield α,
and vice versa. If little correlation among adjacent blocks
is observed, the default value is used. Our actual estimation
method is as follows:
1) hdif = |ρNW

H − ρNH | + |ρNW
V − ρNV |

2) vdif = |ρNW
H − ρWH | + |ρNW

V − ρWV |
3) if (hdif < 0.6 vdif) then // horizontal correlation

4) αH = 0.4ρWH + 0.3ρNH + 0.1ρNW
H + 0.2α0

5) αV = 0.4ρWV + 0.3ρNV + 0.1ρNW
V + 0.2α0

6) else if (vdif < 0.6 hdif) then // vertical correlation

7) αH = 0.3ρWH + 0.4ρNH + 0.1ρNW
H + 0.2α0

8) αV = 0.3ρWV + 0.4ρNV + 0.1ρNW
V + 0.2α0

9) else // little correlation

10) αH = αV = α0

where ρmeans the correlation coefficient value of the corre-
sponding block, superscript N denotes north block, W west,
NW northwest; subscript H denotes horizontal, and V verti-
cal direction. We let α0 = 0.7 for I and α0 = 0.4 for P and
B pictures.

4. EXPERIMENTAL RESULTS

For the experiment we used H.264 reference software JM8.2[4]
as the base. The following modifications were made:
� Skipped quantization/dequantization process.

� Replaced transform codes with reversible transform.

� Disabled the deblocking loop filter.

4.1. Video coding conditions

We encoded four QCIF and five CIF sequences of 30 frames/sec.
Coding conditions were as follows:
� Entropy coding = CABAC

� R-D Optimization enabled

� Number of reference frames = 5

� Max search range = 16

For I coding, first 100 frames were intra-encoded, and
we tried two other intra-compression approaches. One, pro-
posed by Lee et al.[3], changes the semantics of H.264’s
intra prediction. It successively uses lossless decoded pix-
els during intra prediction. This is only applicable for Intra
slices. The other approach is Motion JPEG 2000 (kdu v compress[5]).
For fair comparison, we tuned the coding conditions to max-
imize the compression ratio as follows:

� Color transform suppressed (Cycc=no)

� Decomposition level (Clevels)= 3 for CIF, 2 for QCIF
(default=5)

� Reversible mode enabled (Creversible=yes)

For P coding, we encoded 100 pictures in IPP· · · struc-
ture. The compression ratio was calculated from just 99 P
pictures. For B coding, we encoded 298 pictures in IBBP· · ·
structure, including one I picture, 99 P pictures and the re-
maining 198 B pictures. The compression ratio was calcu-
lated from these 198 B pictures.

4.2. Discussion

Compression ratios calculated from the total bit amount are
shown in Tables 1, 2 and 3. “no quantization” corresponds
to the method in subsection 2.1.

It is observed that the “no quantization” method pro-
vides poor compression (sometimes even expansion for I
pictures).

For I picture coding, the proposed method performed
slightly worse (2.0% on average) than Motion JPEG 2000
while outperforming all the conventional methods (by 9.4 to
14% gain to FRExt). The proposed method outperformed
Motion JPEG 2000 for container and foreman. It is also
observed that Lee’s method offers considerably improved
intra coding efficiency.

II - 303

➡ ➡

Table 2. Lossless compression ratios for P pictures (*QCIF, **CIF)
no quan- method 1 method 2 method 3 proposed method

sequence tization (FRExt) (piecewise) C=1+
√

2 C = 3 C = 3.5 fixed adaptive
container* 1.729 4.472 3.635 3.840 3.854 3.861 4.412 4.487

silent* 1.731 4.334 3.588 3.890 3.899 3.920 4.441 4.419
news* 2.455 5.909 4.963 5.267 5.287 5.312 5.978 6.009
stefan* 1.200 2.312 2.151 2.188 2.203 2.215 2.351 2.367
coast** 1.224 2.289 2.145 2.241 2.249 2.286 2.423 2.442

foreman** 1.415 2.857 2.617 2.680 2.698 2.751 2.938 2.964
silent** 1.580 3.542 3.076 3.204 3.219 3.292 3.622 3.652
paris** 1.466 3.171 2.777 2.836 2.855 2.916 3.194 3.249

mobile** 1.148 2.124 1.989 2.010 2.023 2.064 2.178 2.196
Average 1.550 3.446 2.993 3.128 3.143 3.180 3.504 3.532

Table 3. Lossless compression ratios for B pictures (*QCIF, **CIF)
no quan- method 1 method 2 method 3 proposed method

sequence tization (FRExt) (piecewise) C=1+
√

2 C = 3 C = 3.5 fixed adaptive
container* 1.757 4.612 3.736 4.068 4.080 4.155 4.651 4.692

silent* 1.726 4.288 3.593 3.933 3.941 4.035 4.511 4.494
news* 2.520 6.164 5.152 5.536 5.555 5.698 6.343 6.368
stefan* 1.191 2.279 2.128 2.174 2.189 2.229 2.351 2.370
coast** 1.286 2.492 2.320 2.429 2.438 2.475 2.631 2.641

foreman** 1.399 2.841 2.620 2.693 2.711 2.753 2.916 2.952
silent** 1.590 3.632 3.162 3.343 3.358 3.408 3.706 3.735
paris** 1.521 3.465 2.988 3.106 3.125 3.162 3.436 3.501

mobile** 1.188 2.250 2.113 2.139 2.152 2.185 2.296 2.326
Average 1.575 3.558 3.090 3.269 3.283 3.344 3.649 3.675

Thanks to motion compensation (temporal decorrelation),
P, B pictures can be compressed to about half the amount of
I pictures. Our method offered the best performance with
0.3 to 6.2% gain over FRExt.

The proposed adaptive method is always better than the
fixed method except for silent(QCIF). This is observed in
all I, P, and B pictures. This may be because silent(QCIF)
has little inter-block correlation which made the adaptive
prediction less effective.

5. CONCLUSION

In this paper, we proposed a lossless video coding scheme
that uses a reversible transform procedure and compared it
against three conventional methods. We investigated the
characteristics of each transform.

We also provided practical, good parameter sets and an
adaptive parameter adjustment scheme for the proposed method.
Even though it is simple, our method outperformed other re-
versible transforms in all picture types. As for I picture, the
proposed adaptive method almost matched the performance
of Motion JPEG 2000.

Future work includes developing a method that better
decorrelates the residual signal to provide better compres-
sion performance.

6. REFERENCES

[1] ISO/IEC 14496-10:2003, Information technology –
Coding of audio-visual objects – Part 10: Advanced
Video Coding, International Standard, Dec. 2003.

[2] Kunitoshi Komatsu and Kaoru Sezaki, “Reversible
transform coding of images,” IEICE Trans. Fundamen-
tals, vol. J79-A, no. 4, pp. 981–990, Apr. 1996.

[3] Yung-Lyul Lee and Ki-Hun Han, “Lossless coding for
professional extensions,” JVT of ISO/IEC MPEG &
ITU-T VCEG, JVT-L017, July 2004.

[4] “JM reference software version 8.2,” May 2004,
http://bs.hhi.de/˜suehring/tml/.

[5] “Kakadu software version 4.2 linux executable,” Feb.
2004, http://www.kakadusoftware.com.

II - 304

➡ ➠

