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ABSTRACT

We have developed a statistical prediction technique to compen-
sate for lost pixel blocks during real time transmission of video
over packet-switched networks. The approach could as well be
used for standard inter-frame coding. The method is based on the
joint modeling of pixel statistics by Gaussian mixtures. Different
EM variants for decreasing computational complexity and storage
space are proposed. In the case of 4×4 luminance blocks, our
method increases performance by 2.3 dB when augmenting the
number of mixture components from 1 to 64. We show that these
results are statistically significant.

1. INTRODUCTION

Video communication over the Internet increases in popularity.
The problem of delivery of a Quality of Service in packet-switched
networks is treated at various levels throughout the ATM and IP
protocol stacks [1, pp 579–594]. As of today, Intserv and Diffserv
models have not yet found their way out to the public. Though
one may reasonably expect a continuation of the improvement of
the physical layer, an increase in access possibilities is usually fol-
lowed by an increase in demand. Under such circumstances, there
will be a continued need for error concealment. Another area of
application of error concealment techniques is the compensation
for frame erasures in cellular networks.

In [2, 3], error concealment is treated in conjunction with neu-
ral network based prediction and end user quality. We have devel-
oped an interpolation scheme based on Gaussian mixtures to com-
pensate for lost blocks. For the evaluation of our scheme, motion
vectors are recalculated at the receiver end. This means that our
method will work even under severe conditions when motion vec-
tors, encoded with high redundancy, are lost. This also means that
the method is able to compensate lost I and P frames as well as B
frames. The system can be used for both uni- and bi-directional in-
terpolation. In [4], it has been shown that classification of pixels in
lost blocks reduces blocking artifacts when interpolating dropped
frames in very-low-bit-rate coding. Our model-based predictor can
be seen as a soft classifier that tries to understand the current sit-
uation in order to make the best possible proposal for the replace-
ment of the lost block. The EM algorithm discussed in [5] has
been widely used on statistical problems throughout many disci-
plines. In the field of communication, it has been applied for fitting
a Gaussian basis in order to improve prediction [6], quantizing [7]
and classification [8].

In this paper, we focus on the statistics of the training of the
Gaussian mixture model for 4 × 4 blocks. Our idea is to replace

larger lost blocks by a combination of smaller blocks in the case
of a real scenario. By the usage of small blocks, computational
complexity is decreased. Using spatial information from the sur-
rounding of each 4×4-block helps avoiding blocky artifacts in the
larger lost blocks. An advantageous feature of our predictor is that
it can provide a replacement for varying available contexts at the
receiver side.

This paper is organized as follows. In section 2, our method is
described. Two versions of the EM algorithm are presented in sec-
tion 3. Section 4 gives the numerical values of the parameters that
are used in the simulations. The results are presented in section 5.
The paper is concluded in section 6.

2. METHOD

2.1. Modeling the source

Let x denote the pixel luminance values of a lost block and let y

denote a context to the loss that is still available at the receiver.
Given these preliminaries, one may pose the problem of error con-
cealment as to find a predictor

x̂ = E[x|y]. (1)

We model the statistical dependencies between x and y as a Gaus-
sian mixture, that is a weighted sum of M Gaussian densities,

fGM(z) =
MX

m=1

ρmfm(z|µm, Cm) (2)

where zT = (xT , yT ), the fm(z|µm, Cm) constitute a Gaussian
basis and the ρm are the weights or a priori probabilities. The
conditional pdf

fGM(x|y) =
MX

m=1

πm(y)fm(x|y, µx|y,m, Cx|y,m) (3)

where the πm(y) are

πm(y) =
ρmfm(y|µy,m, Cyy,m)PM

l=1 ρlfl(y|µy,l, Cyy,l)
. (4)

is obtained from equation (2). One easily derives

x̂ =
MX

m=1

πm(y)(µx,m + Cxy,mC
−1
yy,m(y − µy,m)). (5)
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One advantage of this approach is that we are free to form x and
y in any way from z. This is valuable in the case of error bursts
where there is a high probability of several missing neighboring
blocks. If only a sub-set ỹ ∈ y is available at the receiver, we form
a new predictor

˜̂x = E[x|ỹ]. (6)

The EM algorithm is used to optimize the model in equation (2)
for a given database. The standard EM update-equations are

ρ
i+1
m = 1

N

PN

n=1 γi
n,m (7)

µ
i+1
m = 1

Nρ
i+1
m

PN

n=1 γi
n,mzn (8)

C
i+1
m = 1

Nρ
i+1
m

PN

n=1 γi
n,m(zn − µi+1

m )(zn − µi+1
m )T (9)

where zn denote the N training vectors and i is the iteration count.
The a posteriori probabilities γi

n,m are

γ
i
n,m =

ρi
mf i

m(zn|µi
m, Ci

m)PM

l=1 ρi
lf

i
l (zn|µi

l, C
i
l )

. (10)

The computational complexity of the algorithm is approximately
M determinants, M matrix inversions and 3MND2 additions and
multiplications per iteration where D is the number of elements in
a vector zn. The form of a more exact expression for the complex-
ity is dependent on the values of M , N and D. The value of the
above expression can be made smaller by observing that we deal
with symmetric matrixes. The training is performed off-line.

2.2. Organization of pixels into vectors

We work on the luminance components of the pixels. The vector z

in equation (2) contains the pixel luminances of a square block zt

of side length ∆ and its spatio-temporal surroundings. The reader
should distinguish the index t which signifies time from the index
n that enumerates the vectors in the database. The situation is de-
picted in figure 1. The past motion vector is calculated by finding
the best match in frame t − 2 to the block in frame t − 1 that is
situated at the same spatial position as the lost block. The future
motion vector is calculated by finding the best match in frame t+2
to the block in frame t + 1 that is situated at the same spatial posi-
tion as the lost block. This means that our scheme is independent
of motion vectors calculated at the transmitter end. Two frames
have to be buffered in order to utilize motion-compensated future
information. We set

x = zt (11)

y =

0
@

zt−1

zt+1

zt
F

1
A . (12)

2.3. Evaluation

The evaluation is done using PSNR and the log-likelihood for the
complete data z. The log-likelihood can be related to an upper
bound on the entropy and is evaluated as

L(Θ) =
1

ND

NX
n=1

log2(
MX

m=1

ρmfm(zn|µm, Cm)) (13)

Frame t − 1 Frame t Frame t + 1

z
t−1

z
t
F

z
t
F

z
t+1

z
t

∆

Fig. 1. Organization of pixels into vectors.

where D is the number of elements in z and Θ = {µm, Cm}.

3. TWO VARIATIONS ON THE APPROACH

3.1. Karhunen-Loéve diagonalization

Neighboring video-pixels are highly correlated and tend to have
the same value. This means that the source has the form of a hyper-
ellipsoid in color space. We can exploit this feature by applying the
Karhunen-Loéve transform

z
′ = V z (14)

where V is obtained by use of the conventional EM-algorithm with
M = 1. We may now approximate that all of the elements out-
side the diagonals of the covariance matrices are zero and hereby
decrease the number of variables to be estimated in the covariance
matrixes from D2 to D. Storage space is also saved. Through
the diagonalization, the mixture components are allowed to ad-
just to local correlation by scaling but not by rotation. Lower per-
formance is therefore expected in comparison with the standard
method. The predictor (5) can now be used with

µm = V µ′ (15)

Cm = V C′
mV T (16)

where µ′
m and C ′

m are the means and covariances obtained through
training on the transformed data.

Another possible approach would be to use the DCT transform
in order to decorrelate the components of z. The advantage of the
DCT-approach is that no storage of the eigenvectors is needed. The
decisive disadvantage of this method is though that it does not han-
dle temporal correlation in a straight-forward way.

3.2. Deflection of frequent vectors

Another way to modify the EM-algorithm to make profit of the
form of the source is to randomly deflect vectors that occur more
often. In this way, given a fixed number N of processed vectors
zn, the EM-algorithm sees more of the distribution during each
iteration. This might be valuable in a real application where an ex-
tensive database should be used for the training. We have selected
the criterion to accept each vector with a probability

p(z) = α
d(z)2 + β1

d(z)2 + β2
(17)
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where α > 0 and 0 < β1 < β2 are arbitrary constants and
d(z) is the scaled Euclidean distance from z to its projection on

1√
D

(1, ..., 1)

d(z) =
‖z − z̆‖2√

D
. (18)

The vector z̆ is defined as

z̆ =
|z · 1√

D
(1, ..., 1)|

√
D

(1, ..., 1). (19)

A consequence of this approach is that the algorithm now sees a
somewhat skewed distribution and we have to modify the equa-
tions in order to avoid this. The compensated update equations
are

ρ
i+1
m = 1

P
Ň
k=1

1
p(zk)

φk(p(zk))

PŇ

n=1 γi
n,mφn(p(zn))

µ
i+1
m = 1

ρ
i+1
m

P
Ň
k=1

1
p(zk)

φk(p(zk))

PŇ

n=1 γi
n,mφn(p(zn))zn

C
i+1
m = 1

ρ
i+1
m

P
Ň
k=1

1
p(zk)

φk(p(zk))

PŇ

n=1 γi
n,mφn(p(zn))

×(zn − µi+1
m )(zn − µi+1

m )T (20)

where Ň > N is the number of scanned vectors in the database
out of which N vectors are are extracted for the training. The
index function φn(p(zn)) assumes the values 0 or 1 depending on
whether zn is chosen for the training or not. The parameter γi

n,m

is

γ
i
n,m =

ρi
mf i

m(zn|µi
m, Ci

m)

p(zn)
PM

l=1 ρi
lf

i
l (zn|µi

l, C
i
l )

. (21)

4. SIMULATION PREREQUISITES

The search for the motion vectors is performed within a square
block of side length 17. The size of the lost block ∆ = 4.

The database is generated from 124 colour and B&W
MPEG1 movies having a framerate of 29.97 frames per second
and an image size of 352 × 240 pixels. The movies are all taken
from [9]. These movies are randomly divided into two sets. One
of these sets consists of 35 movies and is used to extract the model.
The other set consists of 89 movies and is used for the evaluation.
In this way, our evaluation is open in the strict sense. From each
of the two sets described above, vectors are drawn in a uniformly
random manner and in such a way that no two vectors coincide. In
this way, a training and an evaluation database consisting of 1470
000 and 480 000 vectors respectively are built.

In the training, 147 000 randomly drawn vectors from the
training database are used during each iteration. In the evaluation,
the whole evaluation database is used. Ten EM iterations are run
before each evaluation. In all our tests, this number of iterations
has been enough to reach convergence. The algorithm is initiated
by estimates of the mean and covariance of the source. An indi-
vidual covariance matrix for each mixture component is created by
adding a small random number to each of the diagonal elements of
the estimate of the covariance matrix of the source.

For the deflection of vectors described in section 3.2, M = 16,
α is chosen in order to extract a certain number of vectors during
one scan through the database, β1 = 1 and β2 = 642

3
.

Method Lower bound Upper bound
Simple mean interpolation 29.77 29.91
M = 1 31.93 32.03
M = 64 34.23 34.35

Table 1. Bounds within which the PSNR lies with 98% probabil-
ity.

5. RESULTS

In figure 2, we see how the log-likelihood increases as a function of
the number of mixture components. Figure 3 depicts the increase
in PSNR as a function of the number of mixture components.
In addition to the PSNR provided by the full model, the PSNR
curve supplied by the mixture component fm(z|µm, Cm) having
the largest γm(y) is shown. Through using only this component,
M − 1 matrix multiplications in equation (5) can be avoided. By
augmenting M from 1 to 64, we increase PSNR by 2.3 dB. The
computational complexity increases linearly with the number of
mixtures M . Simple mean linear interpolation of the motion com-
pensated information in zt−1 and zt+1 is used as a benchmark.
This method gives a PSNR of 29.8 dB. Thus, our method increases
PSNR by 4.5 dB. It should though be noted that the simple mean
linear interpolation does not take the spatial surrounding zt

F into
account. This is an important cause for the difference in PSNR.

Significance tests have been performed assuming that the square
Euclidean norm of the difference between x and x̂ is distributed
according to a normal distribution with parameters that we can es-
timate with good precision. The bounds on the PSNR that are seen
in table 1 tell us that the result is 0.98-significant.

In figure 4, the Karhunen-Loéve diagonalization approach and
the standard EM are compared. The PSNR saturates faster using
the Karhunen-Loéve diagonalization. This is in agreement with
our expectations.

As was already pointed out in the section 3.2, the method of
deflection of frequent vectors is valuable when we want the algo-
rithm to get as much information as possible out of a comprehen-
sive database, without necessarily feeding the algorithm the whole
content of the database. In order to investigate this scenario, the
PSNR is plotted as a function of vectors per iteration in figure 5.
As can be seen from the picture, the deflection-approach tends to
perform better in comparison to standard EM in trainings where
a smaller fraction of the database is used to fit the Gaussians.
One might expect that the trainings with less vectors are subject
to larger variations in performance. Therefore, we have made sure
that these simulations reproduced the same results a number of
times.

Finally in figure 6, we compare what happens if we divide the
4 × 4 block into four 2 × 2 blocks and compensate these on an
individual basis. One should note that the same amount of infor-
mation has been used by both replacement strategies, but the joint
effort performs better.

6. CONCLUSION

In this paper, a Gaussian mixture based approach to concealment
of lost pixel blocks during transmission of video is explored. We
find that Gaussian mixtures increase performance. Variants of the
algorithm that speed up the training procedure and decrease stor-
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Fig. 2. Standard EM. Log-likelihood as a function of the number
of mixture components.
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Fig. 3. Standard EM. PSNR as a function of the number of mixture
components.
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Fig. 4. Karhunen-Loéve diagonalization in comparison to standard
EM. PSNR as a function of the number of mixture components.

age space are investigated. The importance of the spatial context
for error concealment is observed. An investigation of how to han-
dle error bursts giving rise to varying available contexts at the re-
ceiver end could be the topic of future research.
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