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ABSTRACT

The statistics of natural scenes in the wavelet domain are ac-
curately characterized by the Gaussian Scale Mixture (GSM)
model. The model lends itself easily to analysis and many
applications that use this model are emerging (for e.g., de-
noising, watermark detection). In this paper, we present an
error-resilient image communications application that uses
the GSM model and Multiple description coding (MDC) to
provide error-resilience. We derive a rate-distortion bound
for GSM random variables, derive the redundancy rate dis-
tortion function, and finally implement an MD image com-
munication system.

1. INTRODUCTION

Reliable image communication has always been an impor-
tant research area and has recently received further attention
due to the explosive growth in wireless personal communi-
cation systems. Packet based networks form a major chunk
of all communication networks and these networks tend to
be lossy. Lossy packet networks necessitate the design of
error-resilient image communication systems.

Of the numerous techniques designed to combat packet
loss such as FEC, retransmission, multiple description cod-
ing(MDC) [1] etc., MDC is particularly attractive for image
sources. MDC schemes perform well over erasure channels
due to the fact that all the descriptions are equally impor-
tant and provide the equal amounts of redundancy. A key
assumption made in most MD literature is that the source
is Gaussian distributed. However, it has been decidedly
shown that natural image sources in the transform domain
(DCT or wavelet) are not Guassian[2, 3] . Therefore, it is
not straightforward to apply standard MD coding results to
image sources.

The fact that JPEG2000 – the latest image coding stan-
dard operates in the wavelet domain reflects the importance
and popularity of image representation in the wavelet do-
main. It is therefore important to accurately model the statis-
tics of natural images in the wavelet domain. Significant
research effort has been expended towards this cause[3, 4].
It has been empirically shown in [3] that modelling wavelet
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Fig. 1. Log histograms of raw and normalized wavelet co-
efficients in a sub-band.

coefficients as a scale mixture of Gaussian random variables
captures the statistical properties of wavelet coefficients ac-
curately and succinctly. The model lends itself to analysis
since it provides a technique to “Gaussianize” the wavelet
coefficients. This property has been used in developing ap-
plications such as image de-noising , image compression
image quality assessment, watermark detection etc.

In this paper, we propose an error-resilient image com-
munications scheme that exploits the properties of the GSM
model and uses MDC techniques to achieve error resilience.
We first derive a rate-distortion bound for GSM random
variables and use the result in arriving at a redundancy rate-
distortion function. Finally, we simulate an image commu-
nication system that uses an orthogonal pairwise correlating
transform to form multiple descriptions and uses an erasure
channel[1].

2. THE GAUSSIAN SCALE MIXTURE MODEL

In this section, we describe the model used to represent the
statistics of natural images in the wavelet domain. It has
been shown in [3] that the statistics of wavelet coefficients
fit the GSM model very accurately. A random vector Y
is a GSM if it satisfies the relation Y = zU where z is a
scalar random variable with z ≥ 0 and U ∼ N (0, Q) is a
Gaussian random vector and z, U are independent [3]. The
key feature of this model is that the conditional distribu-
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tion fY |z(y|z) is Gaussian. This feature lets us work with
conditioned random vectors that are actually Gaussian dis-
tributed and therefore not make any assumptions about the
Gaussianity of the source. Also, it has been shown in [3]
that normalized wavelet coefficients U(= Y/z) are jointly
Gaussian.

Intuitively, z corresponds to local standard deviation of
wavelet coefficients that scales the Gaussian random vector
U . Figs.1(a) and 1(b) show log histograms of raw(fY (y))
and normalized(fY |z(y|z)) wavelet coefficients respectively.
It is clear that normalizing the coefficients makes them closer
to a Gaussian distribution. Further, it demonstrates the accu-
racy of the GSM model in representing wavelet coefficients.
We use this model for wavelet coefficients in the sequel.

3. MULTIPLE DESCRIPTION CODING

Multiple Description Codes (MDC) are multiple represen-
tations of an information source. The descriptions are de-
signed such that an acceptable quality of reconstruction is
possible even from a subset of the descriptions. The source
coder intelligently partitions the source information across
descriptions. The communication channel is modelled as an
erasure channel.

Several techniques have been proposed to generate mul-
tiple descriptions[1, 5, 6]. Of these options, we use the pair-
wise correlating transform (PCT) approach [1] in this work.
Analytical amenability, provision of good error resilience,
and ease of implementation motivated the use of the PCT
technique.

The key idea of the PCT technique is the introduction of
controlled correlation between uncorrelated random vectors
(of dimension 2) via a correlating transform. Correlating the
sources increases the rate required to encode them, which is
called redundancy. Since we deal with erasure channels, a
measure of the system’s performance is the end-to-end dis-
tortion when one channel is available and the other is erased.
This is called the one-channel distortion. The redundancy
rate-distortion(RRD) function characterizes the one channel
distortion as a function of redundancy.

The PCT technique assumes the source to be Gaussian
distributed. From our discussion in Section [2] we see that
normalized wavelet coefficients are Gaussian distributed, and
hence lend themselves easily to the application of the PCT
technique. In order to derive the redundancy rate-distortion
function for GSM random vectors, we first derive a rate-
distortion bound for them. This gives us a bound on the rate
that needs to be spent to encode a GSM source at a given
distortion.
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Fig. 2. Operational Rate-Distortion curves for a scalar GSM ran-

dom variable - fZ(z) = ze−z

Γ(2)
, u ∼ N (0, 1)

4. RATE-DISTORTION ANALYSIS OF GSM
RANDOM VARIABLES

We begin our analysis by deriving the rate-distortion bound
for GSM random variables. This derivation is used for de-
riving the redundancy rate-distortion function for the case
of multiple descriptions.

Let Y be a random vector that represents neighboring
wavelet coefficients. Y = zU where z is a scalar random
variable and U = [u1, u2]T where u1, u2 are uncorrelated
Gaussian random variables.

From the definition of the rate distortion function [7],

R(D) = min
f(ŷ|y):E[Y −Ŷ ]2≤D

I(Y ; Ŷ ) (1)

I(Y ; Ŷ ) = h(Y ) − h(Y |Ŷ ) (2)

= h(z) + h(U) − h(Y − Ŷ |Ŷ ) (3)

≥ h(z) + h(U) − h(Y − Ŷ ) (4)

⇒ I(Y ; Ŷ ) ≥ h(z) +
1
2
log

2πeσ2
u1

σ2
u2

D
(5)

Eqn.(3) follows since subtracting a constant doesn’t affect
the entropy. Eqn. (4) results since conditioning reduces en-
tropy and finally we get (5) since the Gaussian distribution
is entropy maximizing. Furthermore, it is known that z is
a positive random variable which can be approximated by a

Gamma density defined as fZ(z) = βγzγ−1e−z

Γ(γ) , where Γ(γ)
is the Gamma function (Γ(γ) =

∫ ∞
0

xγ−1e−xdx). Evaluat-
ing the entropy of a Gamma density using the definition of
differential entropy we get (letting β = 1)

h(z) = −
∫ ∞

0

fZ(z)logfZ(z)dz

= log[Γ(γ)] + γ − (γ − 1)Ψ(γ)
(6)
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Fig. 3. Theoretical and simulated redundancy rate-distortion plot

where Ψ(γ) is the digamma or psi function [8]. Substituting
the result from (6) in (5) we get

R(D) ≥ log[Γ(γ)] + γ − (γ − 1)Ψ(γ) +
1
2
log

2πeσ2
u1

σ2
u2

D
.

(7)
Fig.2 shows the operational rate-distortion curve for a

scalar GSM random variable obtained from a generalized
Lloyd’s quantizer. We see that the simulation results are
close to the bound defined in (7).

5. REDUNDANCY RATE-DISTORTION ANALYSIS

In this section we derive the redundancy rate-distortion func-
tion for the pair-wise correlated GSM source. We assume
a two channel scenario with channel failure probabilities
p1 and p2 respectively. We further assume that the rate-
distortion bound in (7) is achieved with equality. Since Y is
a GSM random variable, the pdf of the components of U i.e.,
u1 and u2 can be expressed as fU1 |z (u1 |z ) ∼ N (0, z2σ2

u1
)

where z is the scalar random variable (which is assumed to
be known).

We derive the expression for redundancy ρ at a given
two channel distortion D0 needed to achieve a one-channel
distortion D1. An orthogonal correlating transform T is ap-
plied to the uncorrelated source pair U = [u1, u2]T to gen-
erate V = [v1, v2]T i.e, V = TU . We evaluate Cov(V ) =
E[V V T ] as

Cov(V) = E[V V T ]

= TE[UUT ]TT where,

E[UUT ] =
[

z2σ2
u1

0 θ
0 z2σ2

u2

] (8)

The orthogonal transform T is defined as

T =
[

cos θ sin θ
−sin θ cos θ

]
substituting T in (8),

Cov(V) = z2.W, where

W =[
(σ2

u1
cos2 θ + σ2

u2
sin2 θ) cosθ sinθ (σ2

u2
− σ2

u1
)

cosθ sinθ (σ2
u2

− σ2
u1

) (σ2
u1

sin2 θ + σ2
u2

cos2 θ)

]

We now compute the redundancy (or excess rate) required
to encode V = [v1, v2]T with respect to the rate required
to encode U = [u1, u2]T at two-channel distortion D0. Let
Ru1,u2|z denote the encode rate for U , and Rv1,v2|z denote
the encode rate for V . Since U, V are conditionally Gaus-
sian, we can use the rate-distortion function for Gaussian
variables and arrive at

Ru1,u2|z =
1
2
log

z4σ2
u1

σ2
u2

D0
+ K,

Rv1,v2|z =
1
2
log

z4σ2
v1

σ2
v2

D0
+ K,

ρ = Rv1,v2|z − Ru1,u2|z =
1
2
log

z4σ2
v1

σ2
v2

z4σ2
u1

σ2
u2

,

⇒ ρ = log
σv1 σv2

σu1 σu2

(9)

where K is a constant that accounts for entropy coding.
We observe that since we are conditioning on z, z needs
to be sent to the decoder without error for successful recon-
struction. The rate needed to encode z is lower bounded by
its entropy h(z). Therefore the total excess rate needed is
bounded by

ρtot ≥ h(z) + ρ

= h(z) + log
σv1 σv2

σu1 σu2

= log[Γ(γ)] + γ − (γ − 1)Ψ(γ) + log
σv1 σv2

σu1 σu2

(10)

The single channel distortion D1 is defined as the average
single channel distortion per random variable [1]. We now
express the single channel distortion D1 in terms of the ex-
cess rate in order to obtain the redundancy rate-distortion
bound.

D1 = E[z2]{(1 − p1)p2E[(u1 − û1)2 + (u2 − û2)2|ch. 1]
+p1(1 − p2)E[(u1 − û1)2 + (u2 − û2)2|ch. 2]}

The MMSE estimates v̂1, v̂2 are given by E[v1|v2]v2 and
E[v2|v1]v1 respectively, since v1, v2 are Gaussian. The ex-
pressions for the estimates are given by v̂1 = E[v1v2]

σ2
v2

v2 and

v̂2 = E[v1v2]
σ2

v1
v1. Finally û1, û2 are given by T′[v̂1v̂2]′. As-

suming p1 = p2 = 1
2 , neglecting effects of quantization and

simplifying, we get,

D1(ρtot) = E[z2]
(

σ2
u1

+ σ2
u2

4

)
22(h(z)−ρtot) (11)
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Fig. 3 shows the plot of the redundancy rate-distortion
function of the proposed multiple description coding sys-
tem. The figure is plotted for fZ(z) = ze−z

Γ(2) , u1 ∼ N (0, 1)
and , u2 ∼ N (0, 0.16), u1 ⊥ u2. We see that the theoretical
curve and the simulation results match closely.

6. IMAGE COMMUNICATION SYSTEM

The basic premise of the proposed algorithm is the fact that
normalizing wavelet coefficients by appropriate scale fac-
tors makes them Gaussian. Furthermore, it is assumed pairs
of wavelet coefficients are uncorrelated and jointly Gaussian
[3].

The procedure used to implement the system is described
below. The image is sub-band decomposed to three levels
using the Haar wavelet. The low-low sub-band is assumed
to be transmitted without error. In order to normalize the
wavelet coefficients, non-overlapping blocks of size 4x4 are
formed and the covariance matrix Q and scaling factor es-
timate ẑ are determined from these blocks. Once ẑ is es-
timated, the coefficients are normalized by dividing them
by ẑ. The pairwise correlating transform is then applied to
the normalized coefficients. The resulting correlated coef-
ficients are transmitted over a pair of erasure channels with
erasure probability p1 = p2 = 1

2 . Since ẑ has to be trans-
mitted without error, it is sent over both channels. At the
receiver, lost normalized coefficients are estimated using
the MMSE estimator. The wavelet coefficient estimates are
found by multiplying the normalized coefficient estimates
with ẑ.

The main aim of the above experiment is to see if the
GSM model performs better than the case where wavelet
coefficients are assumed to be Gaussian. In order to com-
pare the performance of the two systems, we used the exact
same channel in the experimental setup for both cases. The
key difference in the setup for the Gaussian case is that the
wavelet coefficients are not normalized. The results of the
above experiment on standard test images of size 512x512
are shown in Table 1. We clearly see from the table that
using the GSM model results in an improvement in the re-
constructed image quality when compared to the case where
wavelet coefficients are assumed to be Gaussian.

7. CONCLUSION

We have shown that the GSM model for natural scene statis-
tics lends itself very well to analysis in a multiple descrip-
tion coding context. This model does not require any as-
sumptions about the Gaussianity of the source distribution.
A rate-distortion bound was derived for GSM random vari-
ables. Further, the redundancy rate-distortion function was
derived for GSM sources that are transformed using a PCT.

GSM Model Gaussian assumption
Barbara 22.32 21.59
Lena 24.48 23.79
Zelda 27.39 27.07

Table 1. Image reconstruction results for single description
in PSNR (dB) at correlation angle θ = π/16.

Finally, it was experimentally shown via a MD image cod-
ing system that the GSM model performs better than cases
where the source is assumed to be Gaussian. We are cur-
rently looking at using other wavelet bases, using overlap-
ping blocks, varying block sizes and non-orthogonal corre-
lating transforms.
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