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ABSTRACT

One important aspect in Peer-to-Peer (P2P) networks is resource
management since the available resources depend on the contri-
butions made by the peers. In the absence of incentives, empir-
ical data shows that a majority of the participants do not con-
tribute resources. In order to deter such free-riders, some P2P
systems impose constrains on the participating peers which al-
low a peer to gain benefit from the system (download content)
as long as his resource contribution to it (uploaded content) ex-
ceeds a certain threshold. Under these system imposed constraints,
we derive optimal upload policies for each peer given his esti-
mated future download requirements and his previous contribution
to the system. Our results show considerable improvements in the
cost-benefit function by employing the optimal policy compared
to heuristic upload policies. Moreover, the proposed P2P model
is very general, and can be employed for investigating different
applications, usage scenarios etc.

1. INTRODUCTION

Content distribution through Peer-to-Peer (P2P) networks has gained
widespread popularity in the recent past. One of the most impor-
tant reasons for this popularity is that such a distributed content
delivery system is ideal for the dissemination of large size data
such as multimedia files, CD images, etc. Deploying dedicated
servers for this purpose is both inefficient, and prone to failure.
Another advantage of P2P systems is their scalability, as available
resources scale with demand.

While file-sharing is the predominant activity on existing P2P
networks, live broadcast and streaming multimedia applications
through P2P networks are also emerging [1, 2]. Moreover, P2P
networks have also been used to provide distributed directory ser-
vices, storage, and grid computations.

While earlier research on P2P systems has focused mainly
on system design and traffic measurements, other important is-
sues pertaining to the evolutionary dynamics of these systems have
been recently brought forth [3]. Since the successful functioning
of a P2P system depends on the resources contributed by the par-
ticipating peers, it is essential to ensure that peers who benefit
from the network also contribute to it. Central to the successful
evolution and stable behavior of a P2P system is the issue of pro-
viding incentives to the participating peers. This topic has been
investigated in [4, 5]. The proposed solutions range from micro-
economic payment mechanisms to differentiated services.
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A number of current P2P networks employ a simple version
of the differentiated services model by stipulating that the amount
of data that a peer is allowed to download is proportional to the
amount of data that he uploads. More sophisticated differentiated
service models can be constructed by taking into account computa-
tional resources, disk-space, and value of the content as perceived
by the users. Typically, a central agency oversees the transactions
between peers and keeps track of the upload/download statistics
of the peers. However a peer cannot know in advance his future
download requirements, other than in statistical terms. It is there-
fore necessary that the amount he uploads is sufficient to ensure
that he is able to download from other peers. Conversely, ex-
pending resources that significantly exceed the necessary amount
is wasteful since the accrued benefit is not utilized until later.

In this paper, we determine the optimal upload policies for a
peer, given the estimate of his future download requirements, pre-
vious contributions, and the constraints enforced by the system.
We determine the optimum by formulating a stochastic optimiza-
tion problem. Under a very general set of assumptions, we arrive
at a closed form solution to the optimization problem which is the
optimal upload policy. Numerical experiments provide further in-
sight into the system dynamics.

The organization of the rest of the paper is as follows: Sec. 2
describes the model and introduces the parameters that define the
optimization problem. The optimal upload policy is derived in
Sec. 3. Sec. 4 presents numerical results and Sec. 5 concludes the
paper.

2. PEER-TO-PEER RESOURCE SHARING MODEL

Resource sharing between peers may be modeled as a non-cooperative
game played by rational decision makers. Such a model enables us
to study the upload and download policies of a subset of the peers
in the network simultaneously, where each peer tries to maximize
his own payoff by making decisions in a non-cooperative man-
ner [4] [6]. In this paper, alternatively, we consider the sharing
policies of a single peer and make certain assumptions regarding
the rest of the network. The main advantage resulting from this
simplification is the tractability of the latter problem. In [4] for in-
stance, a system with multiple peers sharing multiple contents has
been formulated as a Markov chain and the evolution of the sys-
tem is analyzed numerically. This numerical method is beset with
difficulties that arise due to the exponential growth of the number
of states and the attendant increase in the required computational
power and memory. Moreover, the former model is more suited to
study the system-wide properties of the network; for example, the
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existence and stability of equilibrium points, etc. The present work
on the other hand focuses on the behavior of a single peer vis-à-vis
the rest of the network. As we will see in the following sections,
this approach enables us to arrive at optimal sharing policies in a
purely analytical manner under a very general set of assumptions.

We assume that the system is analyzed in discrete time inter-
vals. The relevant quantities are observed at each time interval and
the appropriate controls are applied. For our system, the time step
might be the duration of a content exchange, or any other suitable
interval of time. The applicable control is the amount of upload.
We assume that the control is applied at the beginning of the time
period and the download happens thereafter. For example, the up-
load can be done during off hours to free up the upload bandwidth
during working hours. We also assume that the requested upload
from other peers always exceeds that prescribed by the policy, i.e.,
there are always sufficient requests from other peers to enable as
much upload as is dictated by the policy.

Denote the cumulative upload and download at the start of the
nth time period by Un and Dn respectively. Let αn = Un

Dn
. The

constraint imposed by the system is that the peers are required to
maintain αn ≥ α for n = 1, 2, . . ..

Let un denote the amount uploaded by the peer during period
n. Then, the maximum amount of data that the peer can download
in the same period is

dn ≤ γ(Un + un) − Dn, (1)

where γ = α−1. Let sn = γUn − Dn denote the state at the
beginning of time n. sn is interpreted as the accumulated savings
by the end of the (n − 1)th period. Then (1) can be rewritten as

dn ≤ sn + γun. (2)

un is interpreted as the production, since it incurs a cost (upload
bandwidth, etc.). dn is the consumption in period n. Let

an = sn + γun. (3)

From (2) and (3) dn ≤ an which allows an interpretation of an

as the net consumption power in the current period. Let zn denote
the peer’s desired download in period n. zn is a random quantity,
since the peer can only estimate at n what his desired download is
going to be at m when m ≥ n. It is clear that dn ≤ zn for all n.
The following parameters further characterize the model:

• r is the benefit of downloading a unit of data. The net ben-
efit in period n is r(min{an, zn}).

• c is the per unit cost of uploading, which can be determined
as a composite function of the upload-bandwidth, compu-
tational cost, etc. The cost in period n is cun.

• In case the desired download exceeds the maximum allowed
download, p is the per unit penalty for not having sufficient
resources to fulfill the desired level of downloads. The net
penalty is p(max{zn − an, 0}).

• On the other hand, if at the end of the nth period αn+1 >
α; which implies that the amount uploaded exceeded the
minimum required to satisfy the desired download. The de-
cision leading to this condition is also penalized. The in-
curred penalty is h(max{an − zn, 0}). Since the current
amount uploaded less the amount downloaded is carried
over to the next time interval, the excess incurred cost is
an insurance against future contingencies. Thus, different
values of h yield policies that either favor the short-term
benefits more, or the long-term ones.

−pz

J(u, z)

(r − αc)z

u

slope = γ(r + p − αc)

u∗ = αz

slope = −γ(h + αc)

≈

Fig. 1. Cost function for given z and s = 0. u∗ = αz is the
optimal upload quantity. For u < u∗ penalty p is imposed while
for u > u∗, penalty h is imposed.

Denote max{x − y, 0} ∆
= (x − y)+. The state then evolves

according to

sn+1 = max{sn + γun − zn, 0}
= (an − zn)+. (4)

s1 is the initial state assigned to the peer by the system.
Based on the above model, we define the one-step cost func-

tion:

Jn(an, zn) = r(min{an, zn})−cun−p(zn−an)+−h(an−zn)+.
(5)

Fig. 1 illustrates the one period cost-function. A peer expects to
stay in the the system over an extended period of time, and par-
ticipate in many upload/download sessions. Also, as noted before,
the desired download in the future is a random quantity. Thus, the
cost function that is used to determine the optimal policy is

J(N, s1) =
NX

n=1

βn−1Jn(an, zn), (6)

where 0 < β ≤ 1 is the discount factor and signifies the fact
that although long-term gains are important, short term gains are
preferred. N is the planning horizon. The optimization problem is
then to maximize E J(N, s1) over all possible realizations of zn

by choosing appropriate values of un.

3. OPTIMAL UPLOAD POLICIES

Equation (6) can be solved for the optimal upload policies un us-
ing dynamic programming [7, 8]. However by an algebraic trans-
formation of the model (4)-(6), and some other assumptions, it
is possible to suppress the temporal component of the model and
find such one-period optima which are also optimal for the prob-
lem with planning horizon N . Such solutions are known as myopic
optima in operations-research literature [7].

From (4), (5) and (6) and substituting un = α(an − sn),

J(N, s1) = αcs1 −
NX

n=1

βn−1{(αc − r)an + p(zn − an)+

+(r + h − βαc)(an − zn)+} + βNαcsN+1(7)
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The relation min{x, y} = x − (x − y)+ has been used in writ-
ing (7). sN+1 is the savings at the end of the planning horizon.
Since β < 1, and if αcsN+1 is upper bounded βNαcsN+1 → 0
as N → ∞. Thus, for a long enough planning horizon, it is pos-
sible to drop the last term on the right hand side of (7). s1 is the
state at the beginning of the planning horizon and is not affected
by the upload policy; which only affects the terms inside the sum-
mation. Therefore, we write J(s1) explicitly as a function of s1

while dropping the dependence on N .
Define

w(an, zn) = (αc−r)an+p(zn−an)++(r+h−βαc)(an−zn)+.
(8)

Then

E J(s1) = αcs1 − E

∞X
n=1

βn−1w(an, zn). (9)

Under the assumption that zn’s are i.i.d random variables, it can
be verified that an and zn are also independent. Therefore,

E w(an, zn) = E {E w(an, zn)|an}. (10)

Let

G(a) = E w(a, z)|a (11)

= (αc − r)a + pE(z − a)++ (r + h − βαc)E(a − z)+.

From (9) and (10),

E J(s1) = αcs1 − E

∞X
n=1

βn−1G(an). (12)

The existence of an optimal policy (a∗) and the method to de-
termine it are given by the following propositions.

Proposition 1 There exists a∗ ≥ 0 such that G(a∗) ≤ G(a) for
all a ≥ 0.

Proof: ref. [8]

Proposition 2 If s1 ≤ a∗, then an = a∗ for all n is a feasible
and optimal solution.

Proof: ref. [8]
a∗ is obtained as the solution to

Fz(a
∗) =

r + p − αc

r + p + h − βαc
, (13)

where Fz(z) is the probability distribution function of the desired
download z and r + p > αc. a∗ as determined from (13) is not
necessarily unique. The non-uniqueness can be resolved in the
following manner:

a∗ = min{z : Fz(z) ≥ r + p − αc

r + p + h − βαc
}. (14)

Since an = sn + γun and is interpreted as the net purchas-
ing power (Sec. 2), Prop. 1, Prop. 2 along with (14) say that the
optimal policy is to maintain the consumption power at the pre-
scribed level given by (14). This is achieved by uploading the nec-
essary quantity un during each time period. Note that this result
is stronger than the one sought, i.e. minimization of (12): a∗ not
only minimizes (12), but does so along every sample path G(an).

Recall that s1, the initial state is a constant and not affected by
the upload policy. The optimal policy in the case when s1 > a∗

is somewhat more involved due to the constraint un ≥ 0. Due to
space limitations, we only mention the result here. The reader is
referred to [7, 8] for details.

Let M denote the number of periods until sn falls below a∗,
i.e.

M = inf

(
n : s1 −

nX
i=1

zi > a∗
)

. (15)

Note that M ∈ {1, 2, . . .} is a random variable depending on the
initial state and the desired downloads during each period.

Proposition 3 If s1 > a∗, the optimal policy is un = 0 for n =
1, . . . , M and an = a∗ for n = M + 1, M + 2, . . ..

Prop. 3 prescribes not to upload in the periods up to and including
those for which sn > a∗, and follow the policy under the case
s1 ≤ a∗ thereafter.

From Prop. 2 and Prop. 3, the optimal upload policy in the
general case is:

u∗
n = max{α(a∗ − sn), 0} n = 1, 2, . . . . (16)

4. RESULTS

In order to illustrate the benefits of the proposed approach, we
compare the optimal policy with a heuristically determined policy.
The heuristic policy assigns an = µ for all n, where µ = E zn

is the mean of the desired download. Since the allowed download
is at most an, the policy an = µ can be considered as the first
order approximation to the optimal. Alternative policies can be
constructed by taking into account the higher moments of the the
distribution of z.

Other than the existence of a distribution function, no con-
straints have been imposed on zn in arriving at (14). For the
purpose of illustration, we assume the download function zn dis-
tributed according to the (1) Exponential distribution with mean µ,
and (2) Uniform distribution with upper and lower limits bu and au

respectively. The values of the model parameters with r as the ref-
erence are: c

r
= 1.5, p

r
= 1.5, h

r
= 0.2 and N = 20. The results

were obtained by averaging over 1000 runs.
Fig. 2 verifies the claim of Prop. 1 which states that a∗ min-

imizes G(a) along every sample path. zn is drawn from the ex-
ponential distribution with µ = 5. Correspondingly, a∗ maxi-
mizes J(s1) for all values of α. It is seen that with increasing α,
the benefit obtained by using the heuristic policy comes close to
that achieved by the optimal. We therefore conclude that for these
parameters, when α is high enough, a peer might save the com-
putational effort by using the heuristic policy mentioned above.
However, the benefit of using the optimal policy increases with
decreasing α. Fig. 3 illustrates the optimality of a∗ for zn uni-
formly distributed in [0 10]. Similar conclusions can be drawn in
this case as above.

The cumulative upload and download at the end of period (n−
1) are related by Un

Dn
= αn, under the constraint αn ≥ α. Then

εn = E
αn
α

− 1 denotes the relative amount uploaded in excess of
the required minimum. As mentioned is Sec. 2, while a high value
of ε implies excess cost incurred in the present, this excess cost
helps meet the download requirements in the future. This trade-off
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Fig. 2. The rising curve with the y-axis on the right is G(a).
G(a∗) < G(a′) for each value of α. Correspondingly E J(a∗) >
E J(a′) which is the falling curve with y-axis on the left.

is illustrated in Fig. 4, where

δn = E
1

N − n

NX
i=n

βi−n(zi − ai)
+

measures the expected mean unsatisfied download from current
period to the end of the planning horizon. In Fig. 4 we see that
εn decreases with increasing n. This is because as n approaches
the end of the planning horizon, we might not make as much pro-
vision for the future as at the beginning of the planning horizon.
Correspondingly, the expected mean unsatisfied demand δn for the
remaining time intervals increases as n → N . Fig. 4 also verifies
that a higher value of parameter h results in a policy that favors
short term benefits to long term benefits.

5. CONCLUSIONS

In this paper we have analyzed the problem of optimal content up-
load policies in the presence of network imposed constraints. A
stochastic optimization problem over an extended planning hori-
zon is formulated. Algebraic transformation of the original prob-
lem enable a closed form solution which yields the optimal upload
policy. Numerical experiments verify the optimality of the solution
and exhibit substantial improvements in the cost-benefit function
as compared to a heuristic policy. Further insight is gained into the
system as regards the effect of the optimization parameters on the
resulting solution. By choosing appropriate values for the param-
eters, we arrive at policies that trade-off short term gains for long
term ones, and conversely.
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