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ABSTRACT

Due to the improvement of compression technology,
limited bandwidth channels can convey more data than be-
fore. However, since compressed streams are very sensitive
to transmission errors, a joint optimization of the source-
channel coding is required. Unequal Error Protection (UEP)
is the most pragmatic way to do it, and exploits the embed-
ded nature of bitstreams produced by scalable coders.

However, depending on the number of substreams and
protection levels, optimization of UEP can be extremely
complex. A large simplification comes from considering
the contribution to the global distortion of each substream as
independent from the others. This paper explores this dis-
tortion additivity assumption for JPEG2000, and shows that
though the assumption does not fully hold, no visible conse-
quence on UEP performance is introduced, while reducing
significantly the complexity of the optimization process.

1. INTRODUCTION

A typical multimedia communication system can be decom-
posed in two fundamental steps. The source coding step
aims at reducing the amount of data needed for the trans-
mission while retaining maximal perceived quality at the
output. In a second step, the channel coding protects the
source coded data against channel impairments. By adding
structured redundancy, the system is able to recover from
errors that occur during the transmission.

Shannon’s theory allows a separated design of the afore-
mentioned steps to achieve error-free transmission, but only
under the ideal assumption that we have an infinite compu-
tational power and data set. Though solutions have been de-
veloped to independently tackle source and channel impair-
ments, joint optimization has recently gained increased in-
terest, allowing global distribution of the available resources
in a multimedia communication system [1].

Several techniques bring accurate control over the re-
source distribution. Scalability features, embedded in state-

of-the-art source coders like JPEG2000 or SPIHT [2, 3], of-
fer a fine quality control by simple selection of the amount
of transmitted data. They enable graceful adaptation for
wireless channels and naturally sort data based on its im-
portance with respect to reconstruction quality. Secondly,
channel coding techniques [4] provide smooth redundancy
control in order to adjust the degree of protection applied to
the data.

Combination of these techniques facilitated the devel-
opement of UEP strategies [5, 6, 7]. UEP conceptually
exploits the significance and error sensitivity of the various
parts of the transmitted data stream, and naturally selects
a suitable protection level for each part. While UEP the-
oretically brings performance gain, we have little informa-
tion on how to optimally assign the protection levels. Actu-
ally, most compression techniques result in the data streams
highly sensitive to corruption. Moreover, the embedded na-
ture of the scalable content introduces decoding dependen-
cies among the substreams. Those effects are reflected in
the error propagation behavior and harden the optimization
of UEP algorithms.

Exhaustive search algorithms are optimal but they im-
pose a significant complexity increase when the number of
substreams or protection possibilities grows. Assuming that
each substream of the scalable content has an independent
contribution to the global distortion (i.e the contributions
are additive) would significantly reduce the complexity of
the final algorithm. While keeping an optimal global so-
lution, it would allow to separately model each substream.
Consequently to justify this simplification, the impact of
substream dependencies on the distortion modeling and on
the optimality of related UEP algorithms has to be studied.
We carried out our investigations with the JPEG2000 source
coder which is likely to become a prominent standard tech-
nology for future multimedia communication systems.

Section 2 summarizes the architecture of a JPEG2000
source coder and Section 3 presents the dependency struc-
ture of its internal data building blocks and the various tools,
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which control the impact of error propagation on the output
distortion. Section 4 presents the additivity mismatch be-
havior of a corrupted JPEG2000 codestream without UEP
related optimizations and Section 5 discusses the impact of
additivity mismatch on a full-search UEP algorithm. Sec-
tion 6 analyzes results and evaluates the validity of our as-
sumption.

2. JPEG2000 STRUCTURE

JPEG2000 is a wavelet-based image compression standard
using the EBCOT (Embedded Block Coding with Opti-
mized Truncation) algorithm [2]. The encoding module
transforms a still image into a hierarchical structure com-
posed of multiple resolution levels, subbands, codeblocks,
and chunks.

The discrete wavelet transform first decomposes each
color component into several resolution levels, each con-
taining a series of subbands. The coefficients in each
wavelet subband are then quantized and divided into regular
arrays of precincts and codeblocks for entropy coding.

Each codeblock is independently entropy-coded using
the recursive probability interval subdivision of Elias cod-
ing [8]. Each entropy-coded codeblock is composed out of
several coding passes (each bitplane taken out of a code-
block spawns 3 different coding passes), commonly referred
to as chunks, and each chunk provides a variable quality
contribution to the reconstructed image.

A post-compression rate-allocation Lagrangian-type al-
gorithm subsequently selects chunks and packetizes them
into data packets, which are assembled to form the final
codestream. Data packets are the main building blocks of
the JPEG2000 codestream. It is composed of two parts:
a header and a body. The header indicates which chunks
are included in this data packet and provides their local po-
sition. The body contains the actual data of the included
chunks.

3. ERROR PROPAGATION MECHANISM

Through the rest of this document, the substream entity will
reference the body of a data packet. Globally we want to
focus on the statistical impact of the source data corruption
only and hence do not consider corruption of the container
itself (header information, markers, etc.). Though this as-
sumption is in reality not valid, we except this to be miti-
gated by assigning a high-redundancy protection to the con-
tainer as part of the UEP assignment. We prefer not to ex-
tensively broaden the scope of this document by analyzing
the non-linear behavior of this type of corruption, but we
definetely want to include it in our future work.

JPEG2000 embeds some basic error-resilience tools in
its codestream [9]: (1) SOP (start of packet) markers allow

partitioning and resynchronization at the packet level; (2)
Entropy coding is done independently on each codeblock
so that the distortion effect may not propagate into another
codeblock and (3) segmentation symbols are used at the bit-
plane level to check the correctness of the decoding process
(error detection tool).

The default decoding mode does not embed error-
resilience tools at the chunk level, which may let errors
propagate across bitplanes. Certain non-default modes help
stopping the propagation by resetting the state of the arith-
metic coder after each coding pass. Though these differ-
ent modes allow to tune the corruption impact by trading
off complexity against bandwidth consumption, we noticed
little performance difference with default mode in all our
simulations.

To summarize, JPEG2000 encoding process avoids that
decoding errors propagates outside of the entropy-coded
codeblock bounds, but the decoding dependency between
its constitutive chunks may let errors propagate from one
chunk to another. Consequently, a single bit error occuring
in the most important chunk may affect the decoding of all
subsequent chunks, and thus introduces errors in all corre-
sponding bitplanes.

Thus, the error propagation due to early desynchroniza-
tion in the entropy-coded codeblock causes errors in ev-
ery bitplane. A second bit error in a lower chunk would
have then a smaller contribution to the codeblock distor-
tion, since decoding errors due to the first error are already
generating distortion in the lower bitplanes. Eventually, the
sum of the distortions generated by single errors is likely
to be larger than the distortion caused by simultaneous bit
errors, and causes a distortion additivity mismatch at the
chunk level.

This effect is the first cause to distortion additivity mis-
match between substream since chunks belonging to a sin-
gle entropy-coded codeblock are distributed across sub-
streams. It is further examined in Section 4 and Section 5,
and supported by simulations.

A second cause to additivity mismatch, is the image-
dependent pixel value distribution that introduces corre-
lation between bit values across bitplanes. Although
this effect is theoretically present, the use of an efficient
data decorrelation stage like the wavelet transformation in
JPEG2000 in combination with an entropy coder mitigates
this effect.

Third, the inverse wavelet transform ideally sums up
distortion effect originating from different substreams for
any single pixel. But restrictions on the current decoders
implementation may cause the computer arithmetic to over-
flow if summed distortion is larger than the anticipated bit-
range.
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4. MISMATCH EVALUATION

A simulation has been carried out that supports the as-
sumptions we made so far on the additivity mismatch that
may subsists after corruption of a JPEG2000 standard code-
stream.

We used the JPEG2000 Kakadu v4.0.3 source coder
with the following options: SOP and EPH (end of packet)
marker, lossless compression, 1 wavelet level (in addition
to the base resolution level), 2 quality layers and 8x8 code-
blocks. The transmitted image is a grayscale version of
Lena with a 512x512 pixel resolution. The decoding pro-
cess uses the resilient SOP marker mode. The total number
of substreams in the encoded image is S = 4 (2 quality
layers per resolution level). Uniform bit error rates (BERs)
ranging from 10−5 to 10−1 are applied on the different sub-
streams. For each BER, 100 simulations are run to obtain
a reasonable averaging of the MSE and the peak signal-to-
noise ratio (PSNR) measurements.

First we jointly corrupt all substreams with a fixed BER
and compute the output distortion dj (j stands for joint cor-
ruption). Then we corrupt each of the S substreams with
a fixed BER b while leaving other substreams uncorrupted,
and compute the S individual distortions di

s where 1 ≤ s ≤
S (i stands for individual). The indices i and j stand for
joint or individual corruption methods. Figure 1 shows the
additivity mismatch defined as α = 1 − (dj/

∑S
s=1 di

s),
which happens to be strictly positive. This confirms that
the additivity based distortion estimation overestimates the
real joint distortion. We observe a peak mismatch of ap-
proximately 12% on the MSE (i.e. less than 0.5 dB for the
PSNR). However, the peak occurs in a high BER region,
which will unlikely happen in an optimized communica-
tion system where BERs below 10−2 are typically observed.
This translates on Figure 1 by a maximum MSE deviation of
4% (i.e less than 0.2 dB for PSNR) for BER close to 10−2,
and a rapidly decreasing mismatch as the BER goes to 0.
Globally, it appears that the error propagation behavior is
approximately additive.

UEP algorithms optimally match protection levels to the
importance of each substream. By increasing the protection
of important substreams we expect to lessen their large con-
tribution to the distortion. Hence, we expect UEP to miti-
gate the masking effect which is one of the main cause for
the additivity mismatch.

It is not clear if the additivity mismatch has a real impact
on the optimality of the UEP distribution algorithm with re-
gards to the reconstructed quality. Therefore the effect of
the additivity mismatch on the quality of the reconstructed
image quality has to be investigated.
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Fig. 1. Additivity Mismatch in Lena image

5. UEP SIMULATION

To fairly match the comparison made in Section 4, two UEP
algorithms were implemented: a full-search (FS) and a full-
search additive (FSA). For each channel signal-to-noise ra-
tio Es/N0, where Es is the uncoded symbol energy and N0

is the noise power spectral density, we generate all possi-
ble protection level combinations, based on the number of
substreams, the number of protection levels and a global
bit-budget constraint that we fix at 2 bits per pixel (bpp).
Note that each combination assigns to each substream a
unique protection level. If needed we allow the algorithms
to exactly fill the budget by protecting a part of the last as-
signed substream with a second lower protection level. Fi-
nally, for each combination we run 100 simulations and for
each Es/N0 channel quality we pick up the combination
that minimizes the output distortion.

The main differentiator between the two algorithms con-
cerns the way they evaluate the output distortion for each
protection level combination. FS does not use any distor-
tion modeling. It straightly applies each combination to the
substreams and outputs the average measured distortion. On
the other hand, FSA uses the fact that substream distortions
are additive. Consequently, it measures the average distor-
sions of the individual substreams and sums them to esti-
mate the output distortion. The main advantage of FSA is
that for each channel quality, we only need to compute the
individual average distortions once for each protection level,
and sum their different combinations to obtain the global
distortion. Denoting S the number of substreams and P
the number of protection levels, we roughly bring down the
complexity from an exponential P S number of combina-
tions (where an average over many simulations takes place)
to a linear P ∗ S, considering the computation of the P S

subsequent sums neglectable compared to simulations.
Figure 2 shows the PSNR performance of different UEP

algorithms over a range of Es/N0. We use the same im-
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age and source coder parameters as in Section 4. BPSK
symbols are used and the channel is modeled by an addi-
tive white Gaussian noise (AWGN) process. Two protec-
tion levels are available, a rate 1/2 convolutional encoder
with generator polynomials (5,7) and a rate 4/5 punctured
version of it. We additonally consider that a substream can
be transmitted without any protection or discarded. As we
deal with 4 substreams and 4 protection levels we subscript
the corresponding algorithms FS4,4 and FSA4,4 on Figure 2.

For these two algorithms, the PSNR ranges from 13 dB
to 36 dB. For Es/N0 below -3 dB, both algorithms do not
transmit anything, so that the x-axis on Figure 2 is truncated
accordingly. For Es/N0 above 11 dB, the PSNR seems to
saturate. Indeed, bit-rate is limited to 2 bpp while the bi-
trate of the encoded image is close to 4.5 bpp. Hence, for an
asymptotic error-free channel, the quality is limited by the
lossy compression. Globally, both algorithms reach similar
transmission performances, which is confirmed by the fact
that their respective protection allocations are strictly iden-
tical.

Hence, the FSA4,4 algorithm performs equivalently
compared to the exhaustive FS4,4 algorithm. Moreover, the
UEP algorithm complexity is significantly reduced when as-
suming distortion additivity. Indeed, each substream can be
modeled independently and an optimal distortion estimation
for the complete codestream is given by simply calculating
a sum.This proves that the additivity assumption brings a
huge simplification to the complexity of UEP algorithms.

We can discern three PSNR thresholds occuring around
channel quality -1 dB, 3 dB and 9 dB which correspond
to the 3 transitions that we can make out of the 4 protec-
tion levels. Indeed, both algorithms always keep a nearly
constant protection level throughout the bitstream between
2 consecutive thresholds. However, for channel qualities
around those thresholds, both algorithms optimally use dif-
ferent protection levels with seamless transitions. The re-
stricted number of substreams and number of protection lev-
els used for this simulation result in an undesirable, but yet
optimal, staircase effect. An additional FSA16,4 simulation
with increased number of substreams is shown on Figure 2,
exhibiting smoother transitions and a significantly reduced
staircase effect.

6. CONCLUSION

This paper shows that the contributions to the global distor-
tion of the substreams embedded in a JPEG2000 scalable
codestream are relatively independent. It has been proven
that for a standard JPEG2000 codestream, the additivity
assumption significantly simplifies the computational com-
plexity of the UEP algorithm without impact on the perfor-
mance.
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Fig. 2. FS vs. FSA performance for Lena at 2 bpp
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