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ABSTRACT

The radial mass transform (RMT) is defined to produce a ro-
tation and translation invariant vector representation of the
neighborhood structure of points. The RMT transforms 3D
(or 2D) data sets into a 1D signal, where m(p, r) gives the
total mass (or intensity) of sensed data at distance r from
the point p. A support vector machine can be trained on
example signals to detect salient points in an entire image
or volume. Results show the method to be effective in mul-
tiple applications. The method is computation intensive but
highly parallelizable and feasible for high value data sets.

1. INTRODUCTION

Detection of salient, or interesting, points is a fundamental
operation for image processing [1, 2, 3, 4] . Such points
are needed for registration of images so that they can be
overlaid for mosaicking, fusion, or change detection. These
points are used for correspondence in stereo computation
and are often used as the basis for aggregation of other struc-
ture in an image, such as corners, lines, or contours [5, 6].

The radial mass transform (RMT) characterizes each im-
age neighborhoodby a rotation and translation invariant vec-
tor. We demonstrated its use in interest point detection on
phantomdata, onmicrotomographic images of a bee stinger,
and on a spinal MRI. We demonstrate the use of the RMT
for interest point detection using a framework that can, in
general, use any vector of image neighborhood features.

We use the term pixel generally to mean either a 3D
volume element or 2D image element. Our actual appli-
cations and implementations use 3D volume images. Sec-
tion 2 gives the definition of the radial mass transform and
methods of computing it. Section 3 gives characteristics of
the transform and demonstrates its use in detecting salient
points. Performance is assessed in Section 4.

This work was supported in part by the U.S. Department of Energy
under contract no. W-31-109-Eng-38.

2. DEFINITION OF THE RMT

The RMT is designed to provide a basis for extracting ro-
tation and translation invariant features from a volume. It
integrates the mass, or density, intensity, etc., at distance r
from some arbitrary fixed point p in space. Let the mass
or intensity at a 2D point x be f(r, θ), where (r, θ) are the
polar coordinates of x relative to p.

m(p, r) =
∫ 2π

0

f(r, θ) r dθ (1)

For a 3D volume, we have another polar coordinate φ.

m(p, r) =
∫ + π

2

−π
2

∫ 2π

0

f(r, θ, φ) r2 sin φ dθ dφ (2)

An intuitive abuse of notation is given below in Equa-
tion 3, where V denotes either a 3D volume or a 2D slice or
image. Moreover, to reduce the variance and bias of down-
stream decisions, the RMT is normalized by the area of the
shell or ring involved in the integral to scale the otherwise
rapidly increasing values for mass as r increases.

m(p, r) =

∫
x∈V [ ||x − p|| ≈ r] f(x) dV

area(r)
(3)

The RMT captures a great deal of structure of the neigh-
borhoodNp of a point and is an efficient representation for
segmentation, clustering or determination of interest points.
By transforming to 1D space, a large suite of efficient algo-
rithms are available.

The RMT is related to the circular Radon transform and
the circular Hough transform [7]. The circular Radon trans-
form integrates mass under a circular (or spherical) impulse,
yielding a scalar value, whereas the RMT produces a 1D
signal for a continuum of impulses. The Hough transform
distributes each unit of mass at I[x, y] in the image space to
the set of all circlesC[r, xc, yc] that pass throughp = [x, y].
The RMT for pixel [xc, yc] can be computed from a Hough
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accumulator array [8] by collecting the mass for each radius
r associated with [xc, yc].

2.1. Radial Mass Transform Computation

The discrete RMT integrates voxels at a discrete set of ra-
dial distances from a central voxel. (2r + 1)3 voxels are
input to yield an output vector of length r + 1. The com-
putation of each vector coordinate sums a unique discrete
set of voxel masses. If the original volume has S slices,
of R rows and C columns, then the transformed data will
have SRCD values, where D is the maximum radius of
the transform. This transformed space must then be signifi-
cantly culled via extraction of a representative set of salient
interest points. Using a naive implementation of the RMT,
4
3πD3 elements are accumulated for each single voxel. The
overall running time of this transform, assuming a stride of
1 in r, is O(D3 × S × R × C).

There is a simple way to compute a single RMT at a
single point p0: visit each voxel in the neighborhood of p0,
compute its distance d to p0 and contribute its mass to ac-
cumulator rmt[d]. This works well inside a bounding box
of the neighborhood or if we want to transform only a small
number of neighborhoods pj . Algorithm 1 is the algorithm
that we used to compute the normalizedRMT for any subset
of voxels within a volume. For each radius r, a set of offsets
RMTlookupr identifies the voxels in the shell at distance
r whose mass will be integrated.

Algorithm 1: Discrete RMT, offset method.
Input: Volume V , Origin for transform
p0, Maximum radius rmax

Output: Discrete radial mass transform
RMTp0

RMT(V, po, rmax)
for r = 1 to rmax

RMTp0,r = 0
foreach∆p ∈ RMTlookupr

RMTp0,r = RMTp0,r + Vp0+∆p

RMTp0,r = RMTp0,r/area(r)
return RMTp0

The RMT can be computed for a set of voxels, as de-
scribed above, for an entire volume, or for regions in a vol-
ume that have high texture as detected by an inexpensive
texture measure. Computing the RMT for an entire volume
or highly textured sub-volume is used when interest detec-
tion is done via a trainable classification system.

2.2. Finding interest points on a phantom

An example involves an interactive user defining interesting
points of a synthetic object – a toy jack that has complicated

limbs and their intersections (refer to Figure 1). An inter-
active user identified interesting points and non interesting
points on only one octant of the object. The RMTs of these
examples were fed as training data to a support vector ma-
chine (SVM). The SVM produced a classification procedure
that was then used to classify every voxel of the original vol-
ume, resulting in the interest points highlighted in Figure 1.
A single slice of the classified volume is shown in Figure 2.
The intensity shown in the slice is actually a continuous
value proportional to the distance of the RMT of that voxel
to the decision boundary created by the SVM. This exam-
ple gives good evidence of the rotational and translational
invariance of our RMT implementation (a direct study is re-
ported below), since training data was drawn only from one
octant of the volume.

Fig. 1. Interest points detected by an SVM classifier trained
on only one octant of positive and negative examples la-
beled by an interactive user. The original volume contained
a synthetic image of a toy jack.

Fig. 2. One slice of interest points from Figure 1. Intensity
of a voxel is proportional to the distance between the voxel
RMT and the decision boundary computed by the SVM us-
ing the user supplied exemplars.

2.3. Features from the Discrete RMT

Additional features can be derived from the RMT: the RMT
itself, RMT derivatives, and any other features, can be com-
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bined to determine the interest in a pixel neighborhood. Ex-
ample RMT derived features are jaggedness, sum of squares
of RMT, moments, etc. Due to space limitations, the reader
is referred to [9] for details.

3. EXPERIMENTAL RESULTS

3.1. RMT Error

One source of error in the discrete RMT is the quantization
of the spherical shells used to integrate the mass. Compar-
ing the volume of the discrete RMT shells to the volume of
continuous RMT shells of thickness one pixel, the largest
relative error is 0.3 at radius r = 1 with an average relative
error of 0.103 for r = 1 . . . 10. Errors arise when the RMT
includes non-uniform regions, since partially covered vox-
els contribute more or less than they should to the integral.
The error does not appear to be a serious problem. The par-
tial occupancy discretization error may be reduced but at a
significant increase in computation cost.

3.2. Validation of RMT Rotational Invariance

To test how close the discrete RMT is to being rotationally
invariant, a set of 421 cylindrical phantoms of radius 5 pix-
els were constructed at varied orientations. A second test
was done using two sets of synthetic volumes that were gen-
erated from a real spinal MRI. The procedure for generating
each phantom was to select a sub-region of the real vol-
ume and generate a series of rotated versions. The rotated
volume was sampled to construct a new volume. For each
generated volume, the RMT was computed and stored. For
both types of synthetic volumes, the error in the RMT was
computed using the Euclidian distance between the RMTs
of matching points in each orientation and in the unrotated
volume. The error results in Table 1 indicate that the largest
error was 2.8%. Error in real data was about double that for
the phantom cylinders.

Table 1. Results from RMT rotational invariance tests.
Number of Relative Error %

Data Set Orientations Mean Std Dev Max

Cylinder 441 1.17 0.21 1.43
Spine 8281 1.15 0.49 2.66
Vertebra 8281 1.64 0.65 2.82

3.3. Transformed Real Data

The process of detecting interest relies on the user identi-
fying a set of training points for the classifier. In Figure
3a a cross section of a soil aggregate is shown where in-
ternal boundaries were considered interesting. A set of 14

interesting points and 13 uninteresting points were selected,
shown in Figure 3b. Figure 4 shows the result of applying

Fig. 3. Soil aggregate (a) cross section and (b) training point
selection.

the interest classifier to the transformed version of the soil
aggregate volume.

Fig. 4. Soil aggregate (a) detected interest points (b) over-
lain on original cross section.

Two of the many qualitative visual results appear in Fig-
ure 5, which shows good detection of the disks between
vertebrae in the spine and good detail of the structure of a
bee stinger.

Fig. 5. Interesting points of (a) spine and (b) bee stinger.

4. PERFORMANCE

Similar to many scientific computations and visualizations,
the computational cost of the RMT is high. One approach
to minimizing the wall clock time is to compute the RMT in
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parallel and store it for later use, which we did by using 18
Sun Blade 100s networked with one Sun Ultra 10 and one
Sun Fire V420.

The data sets ranged in size from 1.3MB (1283) to 150MB
(658 x 658 x 386). All of the phantoms had size 128 3 vox-
els. The computational effort for the RMT was constant for
a given max radius ρmax regardless of the underlying con-
tents of the data.

Table 2. RMT Performance on phantom data using 18
hosts, ρmax = 10. Times are given in Minutes:Seconds.

CPU Time Wall
Volume Slice Time

Data Set Load Process Store Total Total
ScutigeraSub 00:32 26:58 00:47 00:16 01:54

jack 00:31 27:00 00:47 00:16 01:53
spheres 00:31 26:59 00:47 00:16 02:00

uniformVol 00:32 26:59 00:47 00:16 02:00

Sample results for the real data sets are shown in Ta-
ble 3. For data sets with the same slice dimension, the per-
slice execution times were within 1 second and in general
the execution times increased linearly in the number of vox-
els. Thus, it has been demonstrated that the RMT of a large
volume can be computed on a network of simple machines
within a couple of hours. Once RMTs have been computed
and cached, they can be used by scientists in an interactive
mode to explore the data. Input/output and graphical dis-
play, of course, remain as costly operations when the data
set is large. Details are available in [9].

Table 3. RMT Performance on real data using 18 hosts,
ρmax = 10. Times are given in Hours:Minutes:Seconds.

CPU Time Wall
Volume Slice Time

Data Set Load Process Store Total Total
5atah1 a 0:22:49 39:03:25 1:41:59 0:08:29 2:34:34
5atah2 a 0:21:13 36:14:02 1:34:50 0:08:29 2:24:33
5atah3 a 0:18:04 30:51:50 1:20:38 0:08:29 2:07:28
5ath1 a 0:28:45 49:06:55 2:08:12 0:08:29 3:13:20
Scutigera 0:14:24 33:46:41 0:51:18 0:07:04 2:07:33
imp. bull a 0:08:11 12:12:53 0:24:55 0:02:07 0:49:07
spine 0:02:21 5:28:50 0:08:23 0:07:04 0:23:10

5. DISCUSSION

Extensive experiments have been done with several kinds of
data sets, but primarily microtomographic volumes from the
ArgonneNational Laboratory. Results are very encouraging
and work is continuing in using RMT products in the appli-
cations. One application is the analysis of the mechanics of

the human spine, which depends on accurate segmentation
of individual vertebra. Another application is the analysis
of soil samples regarding the transport of carbon between
pores in the soil aggregate and the atmosphere. The micro-
tomographic volumes are very large, very noisy, and do not
have a fixed calibrated range for the sensed material absorp-
tion. A preprocessing step has been used [9] to map (mono-
tonically) widely ranging floating point density values into
a fixed integer range [0 . . . k].

Interest points detected via the RMT and SVM classi-
fier have been used in the automatic computation of a visual
tour of the 3D volume. The goal of the visual tour is to
produce a short smooth path of slices through the volume
such that the slices reveal the most interest point stucture to
the user. Our current software produces side-by-side view
boxes, one displaying the original voxel values and one dis-
playing the “interest value” of the voxels as produced by the
SVM. Sample tours can be found on our website at
http://www.cps.cmich.edu/˜albee/RMT/.
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