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ABSTRACT

This paper describes a method for extracting point features
from an image, corresponding to corners and crossings of
lines. The method is based on a local estimation of a 6 × 6
tensor which describes the parameters of a pair of line seg-
ments. By considering the rank of the tensor, it is possible
to find points of interest. These points can then be further
analyzed to provide detailed information about the config-
uration of the segments. The proposed method is intended
for features which can be used for estimation of position and
pose of 3D objects, e.g., for the purpose of grasping.

1. WHAT IS THE PROBLEM?

Detection of image features which are of higher complex-
ity than lines or edges, such as corners, crossings, junc-
tions, etc, can be done using rather simple methods, e.g.,
the so-called Harris corner detector, [1]. The downside of
these methods are that the spatial localization of the cor-
responding feature is not very accurate and they are not
very selective in the sense that they are likely to be sensitive
also to noise, point patterns, etc. Furthermore, even though
some methods use various representations for describing
what phenomena is detected, these are not rich enough to
distinguish between a corner and a T-junction, or describe
the opening angle of a corner.

By finding interest points it is possible to train a sys-
tem to estimate the pose of an object, [2], but in order to
improve this process, we need point-like features which de-
scribe the actual image data in a richer way than just ”here
is something which may be interesting”.

The problem discussed in this paper is the representa-
tion of multiple line or edge segments in a local region.
We propose a representation which can be used for mul-
tiple segments in terms of their orientations and positions
within the local region. This allows a representation of cor-
ner, crossing, and junctions, which both distinguishes be-
tween the different cases and describes the parameters of
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the segments. It is also shown that the representation can be
estimated directly from image data using simple operations
of convolution type.

2. IS THERE A SOLUTION?

We seek a representation which can be used for multiple
line segments and which can describe their orientations and
positions. Where do we start? Let us begin with the usual
orientation tensor T, a symmetric 2 × 2 matrix which can
be used for describing the orientation of an edge segment:

T = A n̂n̂T . (1)

n̂ is the normal of the edge and A > 0 is related to the
“strength” or contrast of the edge. Different methods for
computing T have been described for both 2D and 3D im-
age data, see [3]. Taking the symmetry of into account, T
can be represented as a 3-dimensional vector in the 2D case.

T does not provide any information about the position
of a specific edge. However, if T has been estimated at the
point x = (x1, x2)T , the combination of x and T = T(x)
represents the fact that at x there is a line segment with ori-
entation given by T. We refer to the tupleO = {x,T} as an
observation. In the following we will develop a representa-
tion which can maintain several simultaneous observations.
This is done using the following strategy: the representa-
tion of different parameters related to the same observation
is constructed by taking their outer products, or tensor prod-
uct “⊗”, resulting in a matrix or tensor, and combinations of
multiple observations are made by superposition.

In this presentation, multiple observations imply inde-
pendent observations, by which we mean that they refer to
segments which are not part of the same line. Consequently,
the goal is to develop a representation which allows the sep-
aration of independent observations. Furthermore, in gen-
eral all coordinates refer to a local coordinate system, usu-
ally related to the local region from which the representation
is estimated. The goal is to define a representation such that
the number of independent observations corresponds to the
rank of the resulting matrix.
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The first step is to formally combine x and T into a
single object by taking their outer product. Since x is a
2-dimensional vector and T(x) is a 3-dimensional vector,
their outer product x ⊗ T(x) can be represented as a 2 × 3
matrix S. Furthermore, two observationsO1 = {x1,T(x1)}
and O2 = {x2,T(x2)} are represented by

S = x1 ⊗ T(x1) + x2 ⊗ T(x2). (2)

However, the current representation of O leads to dif-
ficulties. First, A in (1) is related both to the local edge
contrast and to the specific implementation of the method
for estimating T. This means that given S, we are not able
to unambiguously determine both x and T if A is unknown.
Second, the idea that the rank of S should correspond to the
number of independent observations fails. If the two obser-
vations describe edge segments of the same orientation, i.e.,
T(x1) ∝ T(x2), then S in (2) is of rank one. This also hap-
pens if O1 and O2 describe segments for which x1 ∝ x2.

A solution to the first problem is to use a homogeneous
representation of x, for example:

xH =
(
1 x1 x2

)T
. (3)

If we define S = xH ⊗T, it is always possible to determine
x in an unambiguous way given S.

The second problem can be solved by mapping also T
into a projective space, which is done in the following way:
define the 3 × 2 matrix K as

K = K(x) =

⎛
⎝−x1 −x2

1 0
0 1

⎞
⎠ . (4)

Given a line segment with normal vector n̂ at point x, let us
consider the 3-dimensional vector lH defined by

lH = lH(x) = K(x) n̂(x). (5)

This vector is the dual homogeneous coordinates of the line
with normal vector n̂ passing through the point x. This can
be seen by considering the product

d = yT
H lH = n̂T (x − y), (6)

where yH is the homogeneous coordinates of an arbitary
point y. Clearly, d vanishes if and only if y is on the line.
To improve our representation, we replace T by

S02 = K T KT = A lH ⊗ lH . (7)

Notice that S02 is a function of x and that it is a symmetric
3 × 3 matrix, i.e., can be seen as a 6-dimensional vector.

Using S = xH ⊗S02 as the representation of O assures
that S is of rank one for a single observation and of rank
two if it is the superposition of two observations. However,

this construction does not guarantee that the superposition
of three independent observations results in a rank three ma-
trix S. To reach this property, we can replace xH by

S20 = xH ⊗ xH , (8)

which we can see as a 6-dimensional vector. Finally, then,
we arrive at a representation of a single observation O ac-
cording to

S = S22 = S20 ⊗ S02, (9)

which can be implemented as a 6 × 6 matrix.
The replacement of xH by S20 also has the advantage

of allowing us to estimate both first and second order mo-
ments of a segment. An edge segment does in practice never
consist of a single point. Instead, for a particular segment
we observe a set of points Γ which all have approximately
the same orientation, given by T. Since all these points are
on the same line, given by lH , this means that S02 in (7) is
constant except for the variation in A which depends on x.
Consequently, the superposition of S22 for all points in this
set is of rank one:

S22 =

[∑
x∈Γ

A(x) xH ⊗ xH

]
⊗ S02. (10)

Notice that the summation in the last expression results in
weighted moments of order zero, one and two of the corre-
sponding segment. This means that from S22 we can esti-
mate both the centroid of a segments and its extension.

3. CAN IT BE ESTIMATED?

Given that we want to use S22, (9), as a representation of an
observation O and superpositions of such terms for multi-
ple observations, we now turn to the issue of how to estimate
such a representation. One approach is based on first esti-
mating a dense field of orientation tensors. Given a local
region Ω, we can introduce a local coordinate system, and
compute S22 as

S22 =
∑
x∈Ω

W (x) [xH ⊗ xH ] ⊗ [K(x) T(x) K(x)T ] =

=
∑
x∈Ω

W (x) A(x) S20(x) ⊗ S02(x), (11)

where W is a suitably chosen weighting function which we
use to localize the estimated representation. Under the as-
sumption that T is approximately zero except on the edges,
it follows that S22 in (11) can be written as

S22 =
∑

k

S20,k ⊗ S02,k, (12)

where the summation is taken over all segments in Ω and

S20,k =
∑
x∈Γk

W (x) A(x) xH ⊗ xH , (13)
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where Γk is the set of point related to segment k. Here,
S02,k = lHk ⊗ lHk , where lHk is the dual homogeneous co-
ordinates of segment k. Consequently, S22 computed as in
(11) results in a superposition of terms, each of the form
described in (10) (with the additional weighting of W ) and
one term for each independent segment.

Furthermore, it should be clear from the previous pre-
sentation that S22 in (11) is computed by locally correlating
the elements of T with polynomials of up to fourth order
weighted by W . This local operation corresponds to the
global operation of convolving the elements of T with these
weighted polynomials. By choosing a separable W , e.g., a
Gaussian, and because the polynomials are separable, it fol-
lows that these convolutions can be made in terms of linear
combinations of separable convolutions.

4. DETECTION OF SECOND LEVEL FEATURES

Given that we can compute S22 at arbitrary points or even
every point in an image, how can we use this data for im-
age processing? One possible task which can be achieved
is to find points or regions which contains two indepen-
dent segments, e.g., corners or junctions. There are simpler
methods which can do this, e.g., [1], but the proposed rep-
resentation allows us also to determine the parameters of a
junction, e.g., the position and orientation the correspond-
ing segments, with a high accuracy.

To start with, we want to find points which are charac-
terized by being close to two edge segments. If we have
estimated S22 for an image point, this means that we want
to know if S22 has rank two. This can be done in different
ways, but the specific approach chosen here is to compute
a Singular Value Decomposition (SVD) of the 6 × 6 matrix
S22. If there are exactly two non-zero singular values, then
the rank is two, and vice versa. However, in practice all sin-
gular values are non-zero which means that we need some
method for estimating a qualitatively measure of “rank two-
ness” of S22. This can be done by taking the three largest
singular values σ1, σ2, σ3, and compute the following pa-
rameters:

t = σ1 + σ2 + σ3, d = σ1σ2σ3,

q = σ1σ2 + σ2σ3 + σ3σ1, c2 =
−9d + qt

3d − 3qt + t3
.

(14)

From this follows directly that c2 = 1 if σ1 = σ2 �= 0
and σ3 = 0, and it vanishes if S22 has rank one or if σ1 =
σ2 = σ3 �= 0. Consequently, ck represents a measure of
confidence for rank k.

Figure 1 shows a test image together with the corre-
sponding value of c2, weighted with the norm of S22. In
the latter image, bright areas indicate tensors with a high
confidence of rank two. As expected these areas are close

Fig. 1. Test image, Each pixel is a measurement of the cor-
responding tensors confidence of being rank two, c2.

to corners and local regions which contains two line seg-
ments. By searching, e.g., local maxima in this image we
can detect points of interest. Notice that the bright areas are
always found inside the corners and with the maximal value
at some distance from a corner if it is sharper. This indicates
that the rank measure is not only dependent on the number
of line segments but also on the distance to the corner or
junction and the angle between the corresponding line seg-
ments.

5. ANALYSIS OF LOCAL FEATURES

A detailed presentation of the analysis of the S22 tensor is
found in [4]. The basic idea to be used here is that once we
have found a point of interest, we try to estimate the corre-
sponding values of S20 and S02 for each of the segments.
This can be done by computing a SVD of S22, which we
already have in order to obtain c2.

S22 = U Σ VT = σ1u1vT
1 + σ2u2vT

2 . (15)

It must then be the case that S02,1 and S02,2 are linear com-
binations of v1 and v2, i.e.

S02,k = α1,k v1 + α2,k v2. (16)

Each S02,k is a 6-dimensional vector which can be rear-
ranged into a 3 × 3 matrix, which in addition should be of
rank 1. This last property can be used to determine the co-
efficients αi,k in a straightforward way, at least to the order
of a common scaling. Since S02 is an element of a projec-
tive space, this scaling does not introduce any ambiguities
in the interesting parameters. Here, this is done by setting
the coefficient of the first order term in the characteristi-
cal polynomial of S02,k to zero and solve for αi,k. Once
a transformation A on the right singular vectors has been
established, which maps them into tensors S02,k, there is
a corresponding transformation on the left singular vectors
which keeps S22 invariant.

S22 = (U Σ A−1) (A VT ). (17)
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Fig. 2. Detection of two local segments applied on a syn-
thetic image. Notice that the position and extension of the
segments allow us to discriminate between, e.g., corners and
T-junctions

The results are estimates of S02,1 and S20,2, in the form de-
scribed in (13). Since these tensors contain first and second
order moments of each segment, the tensors S20,k can be
further analyzed to give the centroid, extension and the ori-
entation of each segment. For the case of two segments, we
can then visualize the content of a tensor S22 in the form of
two line segments with orientation, centroid and extension
according to the estimated parameters.

Figure 2 and 3 illustrate the results of performing the
computations outlined above. As seen, the pairs of line seg-
ments drawn on top of the images lie very close to the real
segments in the images.

6. CONCLUSIONS AND DISCUSSIONS

This paper presents a representation of local complex fea-
tures for 2D images in form of a 6× 6 tensor S22. The rank
of S22 equals number of independent edge segments up to
rank three which can be used to detect regions which con-
tains two segments. Further analysis of S22 can be made for
providing information about the centroid, extension and ori-
entation of each segment. This allows us to distinguish be-
tween corners, T-junctions or crossings, which can be useful
in a pose estimation process where as much information as
possible is needed for building high level features, [5]. A
general process for doing this is to group lower level fea-

Fig. 3. The algorithm applied on a selection of boxes.

tures and we believe that this can be done in a more robust
way by using the rich information extracted from the fea-
tures described here, thereby reducing the risk of grouping
features on the object of interest with the background.
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