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ABSTRACT
This paper examines the problem of registering images us-
ing an information theoretic metric (e.g., entropy) estimated
using a Euclidean Minimum Spanning Tree (EMST). The
objective is to find an extremum of the metric with respect
to a vector of free parameters. One of the major difficul-
ties posed by such graph theoretic metrics is concurrently
obtaining gradient information as the metric is computed.
Obtaining the gradient is a first step in efficiently optimiz-
ing the metric. Our main contribution is to show how to
obtain a gradient-based descent direction from the compu-
tation of the EMST metric. We also indicate how this can
be used for optimizing image registration over a vector set
of parameters and provide some preliminary experimental
results.

1. INTRODUCTION

Registration or alignment of images is a fundamental prob-
lem in image processing. The ultimate goal is usually to
compare or fuse the information contained in images cap-
tured at different times, by different sensors (multi-modal)
or from different viewpoints. Typical applications include
medical/biological image analysis, computer vision and mil-
itary applications.

Recently, information theoretic registration metrics, e.g.
mutual information of pixel intensities, have been proposed
and extensively studied [10], [9]. These metrics are well-
suited to multi-modal signal registration problems. Most
commonly, the algorithms rely on histograms to compute
the information theoretic metric. An alternative approach
that has produced promising results is based on entropic
spanning graphs [4]. However, for this approach it has not
been clear how to concurrently obtain derivative informa-
tion. Hence no efficient vector optimization method has
been reported based on this type of entropy metric. The
current paper focuses on this problem for the special case
of Euclidean Minimum Spanning Trees (EMST) and indi-
cates how to select a gradient-based descent direction for
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the EMST metric. This leads to a more efficient vector op-
timization algorithm. Although we restrict attention to the
EMST metric, the basic principles of our approach should
extend to other entropic graph functions.

The remainder of the paper is organized as follows. Sec-
tion 2 provides some background on graph theoretic entropy
estimators and Section 3 defines the EMST registration met-
ric. Section 4 formulates the underlying optimization prob-
lem and subsection 4.1 proposes a gradient-based solution.
Details of the proposed method applied to image registra-
tion are provided in Section 5 and some preliminary exper-
imental results are presented in subsection 5.1.

2. ENTROPIC SPANNING GRAPHS

It is possible to estimate entropic measures of a probability
density based on computing specific graphs (e.g. a mini-
mum spanning tree) on independent samples from the den-
sity. In [11], Yukich and Redmond provide a general frame-
work to obtain convergence results of some Euclidean length
functionals for specific graphs. Based on this framework,
Hero et al. [3] present the following result to estimate the
Renyi entropy Hα of an underlying p.d.f: Let Zn = {z1, . . . ,
zn} be n iid samples drawn from a Lebesgue density f ,
G(E,Zn) be a graph with edges weighted by the Euclid-
ean distance between their endpoints and G(Zn) denote a
family of graphs with a specific topological constraint (e.g.
spanning trees, k-neighbor graphs, etc.). Define the graph
weight function Wγ(G) =

∑
e∈E |e|γ and the minimum

graph weight (MGW) function

Wγ(Zn) = min
G∈G(Zn)

Wγ(G),

Then:

lim
n→∞

log(
Wγ(Zn)

nα
) = Hα(f) + c a.s., (1)

where c is a constant that depends only on G(Zn), i.e., the
topological constraint. Thus the MGW function can be used
as an asymptotically unbiased and strongly consistent esti-
mator of the α-Renyi entropy. When f is a smooth func-
tion, this method has a faster convergence rate compared
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to the popular histogram based “plug-in” estimation tech-
niques [2] as n → ∞ [3]. In the remainder of the paper, we
restrict attention to graphs G that are spanning trees. In this
case, the MGW function is equal to the EMST weight.

3. THE EMST REGISTRATION METRIC

Inspired by information theoretic registration techniques [9],
and result (1), entropic graphs have recently been usefully
employed for multi-modal registration [4],[8],[5]. The ba-
sic framework of this approach is as follows. For images,
Ii(x, y), i = 1, 2, and d a positive even integer, define
fi(x, y) = f(Ii(x

′, y′) : (x′, y′) ∈ N(x, y)) ∈ R
d/2 where

N(x, y) ⊂ R
2 is called the “neighborhood” of (x, y) and

f is the “feature” function. A trivial but useful example is
fi = Ii(x, y) where f is the identity function and N(x, y) =
(x, y). In this case pixel intensity values are the “features”.
A more complex example that incorporates image gradi-
ent information is to select the feature function to be fi =
(Ii(x, y),∇xIi(x, y),∇yIi(x, y)) ∈ R

3, where ∇x (resp.
∇y) denotes the partial difference with respect to x (resp.
y). Information theoretic registration methods are based on
treating samples of the joint signal (f1, f2) ∈ R

d as real-
izations of a random variable. Intuition suggests that sam-
ples from f1 and f2 should become “dependent” as the two
images are correctly aligned. This might be measured, for
example, by mutual information or joint entropy or, based
on (1), by an entropic spanning graph [5], [8]. In partic-
ular, for a fixed feature function f and constant α, we de-
fine the EMST registration function to be the EMST weight
Wγ(Fn), where Fn is a set of n samples of (f1, f2). To
date, the major disadvantage of using the EMST metric is
that it was not clear how gradient information could be ob-
tained concurrently from the computation. We address this
issue below.

4. OPTIMIZING THE EMST METRIC

Image registration problems typically consist of three ma-
jor components. The transformation space determines the
allowed spatial transformation applied to the images. This
component is highly application dependent. Examples are
rigid-body, affine and deformable transformations. The reg-
istration function quantifies the similarity between two im-
ages under a given transformation. Some examples are mu-
tual information, correlation ratio, the EMST function, etc.
The optimization method searches for the optimum transfor-
mation that maximizes the similarity between the images.

Consider the problem of aligning images Ii(x, y), i =
1, 2, using the EMST metric with fixed sampling locations
Ω ⊂ R

2 and feature function f(.). Let the spatial transfor-
mation T : Ω �→ R

2 be parameterized by m parameters,
i.e. Tt where t = (t1, . . . , tm). For example, a rigid-body

transformation TR
t has three parameters: two shifts (tx, ty)

and a rotation θ and can be expressed as:

TR
t (x, y) =

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
+

(
tx
ty

)
. (2)

Let W (t) denote the EMST weight of

F(t) = {(f1(x, y), f2(Tt(x, y))) : ∀(x, y) ∈ Ω}.

Note that in the rest of the paper we will assume γ = 1.
The choice of a different value for γ may change the regis-
tration result, but the methods discussed below extend in a
straightforward way to these cases. In this framework, the
registration problem boils down to the following optimiza-
tion problem:

topt = arg min
t

W (t).

Typically this problem is non-convex. Thus finding the
global optimum is a difficult task. For illustration, Figure 1
shows the profile of an EMST registration function with re-
spect to the translation along the x-axis for the image pair
in Figure 2.
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Fig. 1. Profile of a EMST registration function

4.1. Obtaining a Descent Direction

Descent optimization methods use a computed search di-
rection that guarantees a local decrease in the value of the
optimization function. Using the gradient or an estimate
of the gradient is a common way to determine this direc-
tion. These methods usually assure convergence to a local
extremum of the optimization function. To obtain a global
extremum, multiple-start and multi-resolution approaches,
[7], can be used to augment the basic method in an attempt
to avoid getting stuck in an undesired local extremum.

The difficulty, however, is that, in general, the EMST
metric is not differentiable. For example, consider the ver-
tex set V = {v1, v2, v3}with edges and parameterized weights:
|e12| = 1− 2t, |e23| = t + 1 and |e13| = −2 + 3t. It’s easy
to show that at t = 0−, the MST consists of e23 and e13,
whereas at t = 0+, e12 and e13 belong to the MST. Thus
dW (0−)/dt = 4 and dW (0+)/dt = 1. Since the left and
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right derivatives are not equal, the derivative of the EMST
weight does not exist at t = 0.

Our main result, Theorem 1, resolves the above issue by
providing a means to quickly determine a descent direction
for the EMST metric. Let Et0 denote the edges that belong
to an EMST of F(t0). Let u be an m-dimensional unit
vector, ∇u denote the directional derivative and ∇ denote
the m-dimensional gradient vector. Let ‖.‖ designate the
usual L2-norm and ‖e(t0)‖ be the Euclidean length of an
edge with endpoints in F(t0).

Theorem 1 If
∑

e∈Et0

∇u‖e(t0)‖ < 0, (3)

then ∃ε > 0 such that

W (t0 + hu) ≤ W (t0)

for all 0 ≤ h ≤ ε.

Proof: If
∑

e∈Et0

∇u‖e(t0)‖ < 0, by vector calculus
∃ε > 0 such that:

∑
e∈Et0

‖e(t0 + hu)‖ ≤
∑

e∈Et0

‖e(t0)‖ = W (t0), (4)

for all 0 ≤ h ≤ ε. Since W (t0 + hu) is the weight of the
minimum spanning tree at t0 + hu:

W (t0 + hu) ≤
∑

e∈Et0

‖e(t0 + hu)‖. (5)

Hence combining 4 and 5, we get W (t0 +hu) ≤ W (t0).�
It can be shown that, when nonzero,

ud = −
∑

e∈Et0

∇‖e(t0)‖, (6)

satisfies the condition in Equation 3 and therefore is a de-
scent direction. Hence, computation of a descent direction
simply involves the additional computation of the gradient
of the edge weights. This requires a negligible amount of
additional computation compared to the computation of the
actual EMST weight and it can be done concurrently with
that computation.

5. APPLICATION IN IMAGE REGISTRATION

As a concrete application of the above ideas, consider the
problem of rigidly registering two images I1 and I2. To
provide a fair comparison to the popular mutual informa-
tion based algorithm we use pixel intensity values as fea-
tures. For a given set of transformation parameters t0 =
(tx0, ty0, θ0) and fixed set of sampling locations Ω ⊂ R

2 the

registration metric is equal to the total weight of the EMST
of {I(x, y) = (I1(x, y), It0

2 (x, y)) : ∀(x, y) ∈ Ω} where
It0
2 (x, y) = I2(T

R
t0

(x, y)). Let e = (I(x1, y1), I(x2, y2))
be an edge in the computed EMST. Define

∇‖e‖ =
(

∂‖e‖/∂tx; ∂‖e‖/∂ty; ∂‖e‖/∂θ
)
and

∇It0
2 (x, y) = (∂It0

2 (x, y)/∂x; ∂It0
2 (x, y)/∂y).

Then it’s easy to show that:

∇‖e(t0)‖ = 1/‖e(t0)‖ ∗ (It0
2 (x1, y1) − It0

2 (x2, y2))

∗(∇It0
2 (x1, y1) −∇It0

2 (x2, y2))
T ∗ R,

where R =

(
1 0 y1 − y2

0 1 x2 − x1

)
. Plugging this in Equa-

tion 6 gives us a descent direction for each iteration of the
formulated optimization problem.

We have implemented an iterative optimization scheme
for the EMST image registration metric based on the above.
In our implementation we employ a “pyramid approach” to
avoid “getting trapped” in local minima. Thus the algorithm
starts with registering coarse (low resolution) representa-
tions of the images. We use Gaussian blurring and uniform
subsampling to obtain these low resolution images. The
alignment results obtained from the coarse level are then
used to initialize the registration at the next level. The algo-
rithm terminates once full resolution is reached.

For a given set of transformation parameters t0 we can
compute a descent direction ud by considering only the edges
that belong to the EMST E(t0). For any other t, the EMST
metric by definition satisfies W (t) ≤

∑
e∈E(t0) ‖e(t)‖ and

moving in a direction that decreases the total weight of E(t0)
is equivalent to decreasing an upper bound on the EMST
function. Hence, in our approach we propose to “update”
the EMST every k steps instead of recomputing it at every
iteration. This accelerates the registration algorithm by re-
ducing the total number of times we run the MST algorithm.
To compute the MST we use Kruskal’s algorithm [6] pre-
ceded by a Delaunay triangulation [1]. The time complexity
of this implementation using pixel intensities as features is
O(N log N), where N is the total number of pixels. Note
that, once the EMST is computed, the gradient computation
takes O(N) time. Hence, each iteration of the proposed
algorithm has a time complexity of O(N log N). The fol-
lowing is the pseudo-code for the implementation:

0 Initialize transformation parameters with zero: t0 = 0

1 Starting from the lowest resolution, at each level of the
image pyramid:

• Initialize transformation parameters: t = t0.

• For iter = 1 . . . maxIter

– if (iter%k == 1) compute the EMST of
samples from (I1, I

t
2) and corresponding ud.
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– Update transformation parameters: t = t+
stepSize ∗ ud.

• t0 = t.

2 Warp floating image with t.

5.1. Experimental results

We present some preliminary experimental results obtained
using the pair of images1 shown in Figure 2. Since both
images are artificially generated, ground truth for the align-
ment is known. Prior to the experiment, both images were
corrupted with i.i.d Gaussian noise with a variance 0.1 times
the maximum value of the original image and one of the
images was transformed using a rigid body transformation
with known parameters (tx, ty, θ). Tables 1 and 2 provide
results obtained using the proposed algorithm and a popular
mutual information (MI) based algorithm [10] with three
levels in the image pyramid (translation in pixels, rotation
angle in degrees). The RMS error between the correct and
recovered values and the average recovered transformation
parameters are listed for three different cases. These results
were obtained by averaging over ten trials for each case.
Note that in all three cases both algorithms yield a regis-
tration with sub-pixel accuracy. The MI-based algorithm,
however, has a higher time complexity (O(N2)), where N
is the total number of pixels). Our implementation of the
proposed algorithm was approximately 10 times faster with
compatible parameter values. Both algorithms were imple-
mented in C as consistently as possible.

T1-weighted MRI T2-weighted MRI

Fig. 2.

6. DISCUSSION

In this paper, we have presented some new results for opti-
mizing graph-theoretic registration functions using gradient
information. Initial experimental results indicate that the
proposed algorithm can yield robust and accurate registra-
tion in a multi-modal application. Although these results
are preliminary, the comparison to the standard MI algo-
rithm is encouraging. Extension of the proposed method
to non-linear warpings and higher dimensional features is

1Images obtained from http://www.bic.mni.mcgill.ca/brainweb/

in progress and more complete experimental results will be
reported in the near future.

correct param. algo. output param. RMS Error
tx ty θ tx ty θ tx ty θ

-1.0 4.0 0 -0.86 4.02 -0.11 0.18 0.06 0.43
8.0 2.0 0 8.10 1.71 -0.31 0.31 0.39 0.50
1.0 4.0 -5.0 1.08 3.88 -4.79 0.54 0.67 0.59

Table 1. Registration Results: Proposed Algorithm. Run
time: 12.7 sec.(averaged over 30 trials)

correct param. algo. output param. RMS Error
tx ty θ tx ty θ tx ty θ

-1.0 4.0 0 -0.72 4.45 -0.15 0.35 0.45 0.16
8.0 2.0 0 8.14 1.89 0.46 0.15 0.10 0.47
1.0 4.0 -5.0 0.76 3.34 -4.39 0.45 0.96 0.85

Table 2. Registration Results: MI-based Algorithm. Run
time: 120.5 sec. (averaged over 30 trials)
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