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ABSTRACT

Feature subset selection is very important in high dimen-
sional datasets such as hyperspectral images. In this pa-
per, we define a new feature redundancy measure. Two dif-
ferent feature selection algorithms are proposed based on
this measure. Experimental results on a real hyperspectral
dataset are presented to demonstrate the effectiveness of our
methodology.

1. INTRODUCTION

There are many signal processing applications where high-
dimensional datasets need to be processed. One such ap-
plications is hyperspectral data where hyperspectral sensors
can provide hundreds of bands of data simultaneously. How-
ever, processing such high dimensional data is computation-
ally very complex. Also due to a lack of sufficient train-
ing samples for this high dimensional dataset, the curse of
dimensionality[1] becomes a serious issue. Therefore, re-
ducing the dimensionality of the raw input data space is a
very important step in hyperspectral data processing. Many
different feature(band) selection algorithms have been pro-
posed [2]-[5]. In these algorithms, significantly fewer bands
are selected for further processing such as for classification
or target detection.

Principal Components Analysis(PCA) has been widely
used for feature reduction in the past. PCA transforms fea-
tures X = [X1,X2, . . . , XN ]T into a set of new features

Y = [Y1, Y2, . . . , YN ]T = WT X which are statistically un-
correlated with each other. Here, W = (W1,W2, . . . ,WN ) =
[Wij ]1≤i,j≤N is the eigenmatrix of the covariance matrix
of X . The variance of the first principal component(PC)
is maximum, the variance of the second PC is the second
largest and so on. After transformation, PCs with signifi-
cant variances are selected. PCA does provide an approach
to reduce data dimensionality. However, bands with highly
discriminant information but with small variances may be
concealed in PCA transformations. Furthermore, in some
cases, it is of more interest to find the most useful origi-
nal bands for specific applications. Therefore, some feature
selection techniques based on PCA have been proposed.

In methods based on feature ranking in conjunction with
PCA, a suitably defined score of each individual band is cal-
culated and bands are ranked from high to low based on the

value of the scores. Bands with largest scores are selected
as a result of the feature selection algorithm. In [6], the au-
thor uses Fx(i) =

∑
j |λjWij | as the score of the original

band i. In [5], the discriminant power measure

ρx(i) =
∑

j

∣∣λjW
2
ij

∣∣ (1)

has been used. After a preliminary feature subset has been
selected, a Divergence-Based Band Decorrelation procedure
is applied in order to remove the highly correlated bands.
Notice that the variance of feature Xi is

σ2
xi

=
∑

j

∣∣λjW
2
ij

∣∣ = ρx(i). (2)

From (2), we can see that features are selected based on their
variance. However, the variance of a single band is not very
useful because by simply multiplying the band by a constant
a, for say image enhancement, the variance of that band will
be changed from σ2 to a2σ2. In this case, the classification
performance will not change. As to the divergence measure,
it only measures the difference between two different fea-
tures by comparing their distributions. In fact histograms of
the two images are used most of the time. Since a histogram
only describes the intensity distribution of an image, and it
does not provide any information in the spatial domain, this
method may eliminate important features.

In [4], dominant eigenvectors with corresponding eigen-
values that are much larger than the others are selected. The
angles between the original features and dominant eigen-
vectors are calculated as the feature scores. Obviously, since
no comparison between the original features is used, this
method still suffers from high redundancy between the se-
lected features.

In this paper, we define a new feature redundancy mea-
sure. Two different feature selection algorithms are pro-
posed based on this measure.These methods can be used
as stand alone methods or can be combined with methods
discussed in [4]-[6].The relation between PCA and our pro-
posed method is also explored.

2. FEATURE SELECTION ALGORITHM

Let X = [X1,X2, . . . , XN ]T represent a feature set. With-
out loss of generality, we assume that Xis are random vari-
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ables with zero mean and unit variance. Therefore, the fea-
ture Xi is redundant if it can be expressed as follows:

Xi = f(X1,X2, . . . , Xi−1,Xi+1, . . . , XN ). (3)

Here, f is a suitable function. Obviously, removal of Xi

from the original feature set does not cause any loss of in-
formation and the feature subset X′ = [X1,X2, . . . , Xi−1,
Xi+1, . . . , XN ]T is sufficient. If f is a linear function, Xi

is linearly redundant. To describe the redundancy of a fea-
ture Xi, a number of criteria can be used. In this paper, we
use the MSE criterion R(Xi) = min(E(Xi − f(X1, . . . ,
Xi−1,Xi+1, . . . , XN ))2) as a measure of redundancy of the
feature Xi. Obviously, the lower R(Xi) is, the more redun-
dant the feature Xi is. When R(Xi) = 0, Xi is totally
redundant given the other features. In this paper, we restrict
the function f to be a linear function. This method can also
be extended easily to non-linear functions.

2.1. Linear Redundancy measure

Let f(x) =
N∑

j=1,j �=i

αiXi, then

R(Xi) = E(min
α

(Xi − (
N∑

j=1,j �=i

αiXi))2)

= min
β,βi=1

βT ΣXβ (4)

where βT = [−α1,−α2, . . . ,−αi−1, 1,−αi+1, . . . ,−αN ].

Let β =
N∑

j=1

CjWj . Since W is an orthogonal ma-

trix and βi = 1, (4) becomes R(Xi) = min
C

(
N∑

j=1

C2
j λj

)

subject to
N∑

j=1

CjWij = 1. Using the Lagrange multiplier

method for this constrained minimization problem and with

some calculations, we have, Cj = Wij

λj

N∑

m=1

W2
im

λm

, and,

R(Xi) =
1
gi

(5)

where, gi =
N∑

j=1

W 2
ij

λj
. Obviously, the higher gi is, the more

redundant Xi is. When gi = ∞, R(Xi) = 0, and Xi is to-
tally redundant, i.e., elimination of Xi from the original fea-
ture set will not lose any information. Also, “normalizing”
the column eigenmatrix W = [W1,W2, . . . ,Wi, . . . ,WN ]
by dividing the Wis with

√
λi to form a new matrix

ω = [ω1, ω2, · · · , ωi, · · · , ωN ] (6)

= [
W1√
λ1

,
W2√
λ2

, · · · ,
Wi√
λi

, · · · ,
WN√
λN

],

we get,R(Xi) = 1
‖ωi‖2

2
, where ‖.‖2 is the second norm of a

vector.

2.2. Properties of the Redundancy Measure

Let SN be an N-Dimensional vector space and Xis be the

vectors that span it. Then, the expression
N∑

j=1,j �=i

αiXi =

αT X ′ in equation (4) is a new vector in the subspace SN−1

that is spanned by X ′. From the definition of R(Xi), it is
easy to see that the vector that minimizes R(Xi) is the or-
thogonal projection of vector Xi in the subspace SN−1. Let
ΣXiX′ = [σi,1, σi,2, . . . , σi,i−1, σi,i+1, . . . , σi,N ]T be the
covariance between Xi and X ′ and ΣX′ be the covariance
matrix of X ′. Therefore, from the definition of the orthog-

onal projection, α = (ΣX′)−
1
2 ΣXiX′ , we have

R(Xi) = βT ΣXβ = 1−ΣT
XiX′Σ−1

X′ΣXiX′ =
|ΣX |
|ΣX′ | . (7)

From equation (7), it is easy to see that the subset that gives
the least redundancy actually corresponds to the largest value
of ΣX′ among all the possible feature subsets. By assum-
ing that the selected features follow a multinormal distribu-
tion, the least redudant feature subset has the largest entropy
I = log((2π)N |ΣX′ |). Both equations (7) and (6) will be
used in our proposed algorithms based on different search
algorithms.

2.3. Feature Selection Based on the Redundancy Mea-
sure

A feature subset with low redundancy can be found by se-
quentially eliminating the most redundant features. In prac-
tice, in order to define the size of the “best” feature sub-
set, two criteria are often used. One is to predefine the size
of the feature subset, the other is to predefine a threshold
that will stop the selection procedure when this threshold
is reached. Combining the redundancy measure with the se-
quential backwards search(SBS) and these stopping criteria,
we propose a SBS feature selection algorithm as follows.

1. Initialize Y = X , calculate its covariance matrix ΣY

2. Find the most redundant feature to be eliminated from
Y.

(a) Find the eigendecomposition of ΣY = WY ·
diag(λ1, λ2, · · · , λ|Y |) ·WT

Y and calculate ω by
(6)

(b) for i = 1, . . . , |Y|, calculate gi = ‖ωi‖2
2

(c) Find the feature YK that corresponds to K =
argmaxi(gi)

3. Update the feature subset Y by either one or both of
following criteria,A\a means remove element a from
the set A.

(a) If gK > τ , then Y = Y\YI , here, τ is a prede-
fined threshold to indicate the degree of redun-
dancy we can omit.
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(b) If |Y| > S, then Y = Y\YI , here, S is a prede-
fined subset size.

4. If |Y| is decreased in step 3, go to step 2.

5. Output the desired feature subset Y.

The SBS based algorithm is quite suitable to be used
in combination with other feature selection algorithms,e.g,
we may use the algorithm of [4] to select a “preliminary”
feature subset with possibly highly redundant bands and
use our algorithm to further reduce the dimensionality of
the feature subset. Using gi with the Sequential Forward
Search(SFS) algorithm, we may also obtain the algorithm
to find the best feature subset as follows:

1. Initialize the output feature subset Y = Φ, the null
set.

2. Among all possible feature pairs Xi,Xj , find features
XI ,XJ that are most uncorrelated, i.e., select 1 ≤
I < J ≤ N = argmin

i,j
|ΣXi,Xj

|. Here, ΣXi,Xj
is

the covariance matrix for features Xi,Xj . Let Y =
Y + {XI ,XJ} and X = X\{XI ,XJ}.

3. Find the next best uncorrelated feature. For i = 1, 2,
. . . , |X|,do

(a) Find the correlation vector ΣY Xi
(these coeffi-

cients are calculated in step 2 ). By using (7),
calculate R(Xi).

4. Select I = argmin
i

R(Xi).

5. Update the feature subset Y by either one or both of
the following methods.

(a) If |Y| < S, then Y = Y + XI and X = X\XI .
Here, S is a predefined subset size.

(b) If R(XI) > τ , i.e, the new feature is not re-
dundant to the acceptable degree with the ex-
isting features in Y, then Y = Y + XI and
X = X\XI .

6. If |Y| is increased in step 5, goto step 2.

7. Output the desired feature subset Y.

3. EXPERIMENTS AND RESULTS

In this section, some experimental results are presented to
demonstrate the effectiveness of our algorithm. The data
used here is a segment of an AVIRIS data scene taken of
NW Indiana’s Indian Pine test Site. From the 220 spec-
tral bands of original data, 185 bands are used, discard-
ing twenty water absorption bands as well as fifteen noisy
bands by visual inspection. To test the classification ac-
curacy, four different classes are chosen, they are “Corn-
notill”,“Soybean-notill”,“Soybean-min” and “Corn”. The

ML classifier is used in both experiments, 50% of the pix-
els are randomly chosen as training data set and the rest are
chosen as testing data set. The classification accuracy re-
sults presented are the averages of 50 runs.

In the first experiment, four different feature selection
algorithms are tested. They are Kermani et al. ([4]), Chang
et al.([5]), Campbell’s ([6]), and our proposed SFS based
selection algorithm. Figure 1 displays the overall classifica-
tion accuracy achieved by these different algorithms versus
different feature subset sizes(|Y| = 1, 2, 3, . . . , 50).

We can see it clearly that when the feature subset size is
not very large |Y| < 15, the performance of our SFS fea-
ture selection algorithm is significantly better than all the
other algorithms. The reason is that our algorithm selects
some of least redundant features while the desired feature
subset size is relatively small. This ensures a higher clas-
sification accuracy. This property can be seen much more
clearly from Table 11, where, in order to achieve 60% clas-
sification accuracy, the size of the feature subset selected
by our algorithm is 7, which is much less than the size of
feature subsets selected by other algorithms(15,17 and 20
respectively). As shown in Figure 2, due to the large di-
mension of the original feature set |X|, the score of each
individual feature is pretty small. Therefore, the size of
the selected feature subset will have to be relatively large
to reach a reasonable threshold. However, our redundancy
measure drops dramatically after a few steps, therefore, it is
easier to select a near optimal feature subset by using our
SFS selection algorithm. In this experiment, we also notice
that when 10 ≤ |Y| ≤ 28, the classification performance
of our SFS selected feature subset increased very slowly
and there is a significant increase in classification accuracy
when |Y| = 29. This is because with the increase of the
feature subset size, the redundancy of the newly selected
feature will be very high, when i ≥ 10, R(Yi) << 0.01.
Therefore, the additional information provided by each ad-
ditional band Yi is limited for i ≥ 10. However, when the
feature subset size Y is large enough, due to the well known
“XOR” phenomenon[2], classification performance will be
increased. In this experiment, when |Y | = 29, this phe-
nomenon occurred.
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Fig. 1. Performance of different algorithms

1Size: the size of feature subset. CA: classification Accuracy.
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Fig. 2. Normalized Scores of original features in descen-
dant order. upper left: R(Xi) in SFS based method, upper
right:[6], bottom left:[4], bottom right:[5]

In the second experiment, we first choose three differ-
ent feature subsets selected by using the three algorithms
using the corresponding thresholds. In Kermani’s method,
we choose τ1 = 84(angle between the original feature and
the major PCs) to select a feature subset Y 1, |Y 1| = 47. In
Chang’s method, we select τ2 = 0.7(the score percentage of
the feature subset versus the score of the whole feature set)
to select a feature subset Y 2, |Y 2| = 39 and in Campbell’s
method, we select τ3 = 0.38(the percentage of the score of
the feature subset versus the score of the whole feature set)
to select a feature subset Y 3, |Y 3| = 33. SBS based fea-
ture elimination is then used to prune the redundant feature
subsets. The classification performance for the three cases
is shown in Figure 3. Again, when the size of the pruned
feature subset is relatively small,our SBS feature elimina-
tion method prunes many highly redundant features in each
feature subset without losing much classification accuracy.
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Fig. 3. The performance of SBS feature elimination in con-
junction with methods in [4],[6],[5]

4. CONCLUDING REMARKS

In this paper, a new redundancy measure is proposed for
feature subset selection in high-dimensional datasets. Based
on this measure, the SFS feature selection algorithm and the
SBS feature elimination algorithm are proposed. A couple
of experiments using hyperspectral data show the effective-
ness of our algorithm. Several extensions to this work are

Table 1. Comparison of the size of the selected feature sub-
sets to achieve the same classification accuracy.

Size CA

Kermani’s ([4]) 20 0.6071
Campbell’s ([6]) 17 0.6000
Chang’s ([5]) 15 0.6011

SFS Based 7 0.6029

planned.
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